Abstract:
Satellite image fusion method and system are provided. The satellite image fusion method includes matching sizes of a panchromatic image and a multispectral image captured from a satellite image; dividing the panchromatic image and the multispectral image into a plurality of blocks; calculating coefficients to acquire Intensity (I) component image data using pixel values of each block of the multispectral image; and generating fused multispectral image data by applying the acquired I component image data to a fusion algorithm. In the multispectral image fusion, the distortion of the color information can be minimized and the multispectral image data of the high resolution can be attained. In addition, the present invention is applicable to not only the IKONOS images but also other satellite images, and the present image fusion can be carried out fast.
Abstract:
Provided are a mobile RFID reader and a control method thereof. The mobile RFID reader includes: a reader controller for beginning a reader operation to communicate with a tag in response to a command of a terminal controller of the wireless communication terminal; an anti-collision state machine for controlling collision among a plurality of tags, and transferring the result of communication with the tag to the reader controller; a reader transmitter for generating a reader command message decided at the anti-collision state machine, and coding and modulating the generated reader command message; a reader receiver for demodulating and decoding a tag signal received through an antenna, and reporting a tag response state to the anti-collision state machine; and a channel controller for selecting a channel to use to communicate with a tag in response to a command of the reader controller.
Abstract:
The RFID reader of an RFID system includes a processor for processing a command for the RFID tag and a response from the RFID tag, a modem for modulating the command from the processor or demodulating the response from the RFID, and an RF unit for transmitting the modulated command transferred from the modem to the RFID tag or receiving the response from the RFID tag and transferring the response to the modem. The RFID tag of the RFID system includes a power supply unit for generating energy using a radio wave received from the RFID reader, a receiver for demodulating a signal received from the RFID reader, a data processor for performing operation according to the signal demodulated by the receiver, and a transmitter for backscattering a signal from the data processor.
Abstract:
Provided are a tag signal receiving apparatus that can perform digital Amplitude Shift Keying (ASK) demodulation onto signals received in a tag, decode the demodulated tag signal in synchronization, and acquire tag data in a mobile RFID reader, and a method thereof. The tag signal receiving apparatus includes: a digital demodulating block for performing ASK demodulation onto a digital tag signal received through a reader antenna and converted into a digital tag signal in an analog-to-digital (AD) converter; and a decoding block for detecting edge position information of the demodulated tag signal by performing accumulation and decoding the demodulated tag signal by using the detected edge position information. The digital demodulating block includes a channel level comparator, a phase inverter, a signal converter; and an adder. The decoding block includes an edge information detector, a correlator, and a bit data decider.
Abstract:
Provided are a tag signal receiving apparatus that can perform digital Amplitude Shift Keying (ASK) demodulation onto signals received in a tag, decode the demodulated tag signal in synchronization, and acquire tag data in a mobile RFID reader, and a method thereof. The tag signal receiving apparatus includes: a digital demodulating block for performing ASK demodulation onto a digital tag signal received through a reader antenna and converted into a digital tag signal in an analog-to-digital (AD) converter; and a decoding block for detecting edge position information of the demodulated tag signal by performing accumulation and decoding the demodulated tag signal by using the detected edge position information. The digital demodulating block includes a channel level comparator, a phase inverter, a signal converter; and an adder. The decoding block includes an edge information detector, a correlator, and a bit data decider.
Abstract:
The present invention provides an apparatus and method for compensating for the variation of a gain spectrum attributable to the temperature variation of a fiber amplifier, and a long-wavelength band dispersion-compensating hybrid amplifier equipped with the gain spectrum compensating apparatus. The apparatus includes a DCF located between a first amplification stage and a second amplification stage to compensate for dispersion of an optical signal output from the first amplification stage and perform Raman amplification of the optical signal using input pumping light; at least one pumping light provision means for providing forward or backward pumping light to the DCF; first and second temperature detection means for detecting temperature variations of the first and second amplification stages, respectively; and control means for controlling intensity of the pumping light of the pumping light provision means according to the detected temperature variations.
Abstract:
Provided is a method of exposing a wafer using a scan-type exposure apparatus. The method includes scan exposing a first shot selected from a first shot column formed of an array of shots disposed in a row in a first direction. The first shot column may be included in a plurality of shots repeatedly formed in the first direction and a second direction that are substantially orthogonal to each other in an exposure target area on the wafer. The method further includes scan exposing a second shot that is included in a second shot column and disposed in a diagonal direction to the first shot. The second shot column may be formed of an array of shots disposed in a row in the first direction and is closer to the first shot column than any other shot in the plurality of shots.
Abstract:
A metro wavelength division multiplexing network is disclosed and includes a plurality of optical repeaters, connected through an optical-fiber link, each of the optical repeaters having a Raman-gain medium for Raman-amplifying an inputted optical signal, and a semiconductor optical amplifier for amplifying the Raman-amplified optical signal, wherein each of the optical repeaters accepts a pump light having a designated wavelength for pumping the corresponding Raman-gain medium.
Abstract:
An application processor includes a memory controller, a display block and a power management unit. The memory controller controls an external memory that stores an image signal to be displayed on a display unit. The display block includes an internal frame buffer and a display controller and the display controller controls the image signal to be displayed on the display unit. The power management unit adaptively controls a power mode of the application processor based on a characteristic of the image signal to be displayed and a power control overhead index.
Abstract:
The display controller includes a decoder, a control circuit, and a video output logic circuit. The decoder is configured to decode a first display command and output a decoding signal and first synchronizing information indicating the first display command is received. The control circuit is configured to generate a first control signal based on second synchronizing information and the decoding signal. The second synchronizing information is output from a second display controller and indicates a second display command is received. The video output logic circuit is configured to send a part of video data stored in a video source and a plurality of first timing control signals for displaying the part of the video data on a display to the display based on the first control signal.