Abstract:
The helium gas separator material includes a base portion and a gas separation portion joined to the base portion. The base portion is composed of a porous α-alumina material which has communication holes with an average diameter of 50 nm to 1,000 nm; the gas separation portion has a porous γ-alumina portion containing a Ni element and a silica membrane portion which is disposed on the inner wall of the communication holes in the porous portion; and the average diameter of pores surrounded and formed by the silica membrane portion is 0.27 nm to 0.60 nm.
Abstract:
A start-up method of a bubble column slurry bed reactor for producing hydrocarbons includes: a first step that fills into a reactor a slurry in which a Fischer-Tropsch synthesis reaction catalyst particles are suspended in a slurry preparation oil with a 5% distillation point of 120 to 270° C., a 95% distillation point of 330 to 650° C., and a sulfur component and an aromatic component of 1 mass ppm or less, and a second step that, in a state where synthesis gas that is primarily hydrogen and carbon monoxide is introduced into the slurry filled into the reactor, raises the temperature of the reactor and starts the Fischer-Tropsch synthesis reaction. As the slurry preparation oil, one containing predetermined components in preset amounts is used. In the first step, the slurry is filled into the reactor in an amount in which airborne droplets do not flow out.
Abstract:
There is provided a method for upgrading hydrocarbon compounds, in which hydrocarbon compounds synthesized in a Fisher-Tropsch synthesis reaction are fractionally distillated, and the fractionally distillated hydrocarbon compounds are hydrotreated to produce liquid fuel products. The method includes fractionally distilling heavy hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a liquid into a first middle distillate and a wax fraction, and fractionally distilling light hydrocarbon compounds synthesized in the Fisher-Tropsch synthesis reaction as a gas into a second middle distillate and a light gas fraction.
Abstract:
Provided is a method for synthesizing liquid hydrocarbon compounds wherein synthesizing liquid hydrocarbon compounds from a synthesis gas by a Fisher-Tropsch synthesis reaction. The method includes a first absorption step of absorbing a carbon dioxide gas, which is contained in gaseous by-products generated in the Fisher-Tropsch synthesis reaction, with an absorbent, and a second absorption step of absorbing a carbon dioxide gas, which is contained in the synthesis gas, with the absorbent which is passed through the first absorption step.
Abstract:
The hydrocarbon synthesis reaction apparatus according to the present invention includes a reaction vessel that brings a synthesis gas having carbon monoxide gas and hydrogen gas as main components into contact with a slurry having a solid catalyst suspended in a liquid hydrocarbon compound to synthesize a liquid hydrocarbon compound using a Fischer-Tropsch reaction; a filter that is provided within the reaction vessel and is configured to separate the liquid hydrocarbon compound from the catalyst; and a powdered catalyst particles-discharging device configured to discharge powdered catalyst particles in the solid catalyst in the slurry to the outside of the reaction vessel.
Abstract:
A production method for natural gas according to the invention includes a step of adiabatically compressing a raw natural gas containing helium gas, a step of separating the helium gas from the raw natural gas by passing the adiabatically-compressed raw natural gas through a separation membrane unit, a step of conveying the raw natural gas from which the helium gas has been separated to a terminal through a pipe line, and a step of pressing the helium gas separated from the raw natural gas into an underground storage formation.
Abstract:
A start-up method of a bubble column slurry bed reactor for producing hydrocarbons includes: a first step that fills into a reactor a slurry in which a Fischer-Tropsch synthesis reaction catalyst particles are suspended in a slurry preparation oil with a 5% distillation point of 120 to 270° C., a 95% distillation point of 330 to 650° C., and a sulfur component and an aromatic component of 1 mass ppm or less, and a second step that, in a state where synthesis gas that is primarily hydrogen and carbon monoxide is introduced into the slurry filled into the reactor, raises the temperature of the reactor and starts the Fischer-Tropsch synthesis reaction. As the slurry preparation oil, one containing predetermined components in preset amounts is used. In the first step, the slurry is filled into the reactor in an amount in which airborne droplets do not flow out.
Abstract:
A porous preform (carrier) is soaked in an impregnating solution, which contains both of a catalytic-activity constituent, e.g. Ni and/or Co, and a carrier-forming constituent, e.g. Mg, Al, Zr, Ti and/or Ca, so as to simultaneously infiltrate the catalytic-activity and carrier-forming constituents into the porous preform. The impregnated preform is dried, calcined at a temperature of 700null C. or higher and then activated at a temperature of 500null C. or higher, whereby fine catalytic-activity particles are distributed on a surface of the porous carrier with high dispersion. Due to finely-distributed catalytic-activity particles, the surface of the catalyst is prevented from deposition of carbonaceous matters during reformation of hydrocarbon and held in an active state over a long term.