Abstract:
An emergency lighting device adapted to be quickly and easily mounted and installed. In one embodiment, a mounting member of the device is first mounted to a desired structure and connected to an external power supply. Once mounted and completed, and emergency lighting assembly is secured to the mounting member. In certain embodiments, securing the emergency lighting assembly to the mounting member connects the device to the external power supply and energizes the device.
Abstract:
A light fixture with coextruded components is disclosed. Embodiments of the present invention provide a solid-state light fixture suitable for use in commercial environments. A light fixture according to example embodiments of the invention includes an LED light source and a coextruded optical assembly. In some embodiments, the reflector portion of the assembly includes a thin skin of reflective material. In some embodiments, the assembly includes an interlocking mechanical interface between the reflector and lens portions of the assembly. In some embodiments, the lens portion of the assembly includes two lens plates. In some embodiments, a longer fixture can be assembled by using two, coextruded portions of an optical assembly, where these portions are adapted to be joined end-to-end. Reinforcing members can be used in the reflector and lens assembly.
Abstract:
A lighting device is disclosed comprising a plurality of light emitters and a heat spreader plate thermally coupled to the plurality of light emitters, wherein the plurality of solid state emitters provides a thermal load upon application of an operating current and voltage, the heat spreader plate dissipating substantially all of the thermal load to an ambient air environment.
Abstract:
Lighting retrofit systems and methods are disclosed that can be used with different light fixtures, but that are particularly adapted for use with retrofitting troffer-style fixtures with LED based light engines. The retrofit systems being assembled without disturbing the lighting or troffer pan or housing (“troffer pan”) for the lighting system being retrofitted. Some of these embodiments can comprise a mounting fixture or frame that can be mounted in an opening in a ceiling grid, and held in place between the grid and the troffer pan edge. The fixture or frame can comprise an opening for a light engine, with the engine being quickly and easily connected to electrical power in the troffer pan and then mountable within the frame opening. These embodiments can allow for the quick and easy construction of the retrofit system without the need for adhesives and fasteners such brackets and screws.
Abstract:
Solid state lamps and bulbs comprising different combinations and arrangements of a light source, one or more wavelength conversion materials, regions or layers which are positioned separately or remotely with respect to the light source, and a separate diffuser. These are arranged on a heat sink in a manner that allows for the fabrication of lamps and bulbs that are efficient, reliable and cost effective and can provide an essentially omni-directional emission pattern, even with a light source comprised of a co-planar arrangement of LEDs. Additionally, this arrangement allows aesthetic masking or concealment of the appearance of the conversion regions or layers when the lamp is not illuminated. Various embodiments of the invention may be used to address many of the difficulties associated with utilizing efficient solid state light sources such as LEDs in the fabrication of lamps or bulbs suitable for direct replacement of traditional incandescent bulbs. Embodiments of the invention can be arranged to fit recognized standard size profiles such as those ascribed to commonly used lamps such as incandescent light bulbs, while still providing emission patterns that comply with ENERGY STAR® standards.
Abstract:
Lamps and bulbs are disclosed generally comprising different combinations and arrangement of a light source, one or more wavelength conversion materials, regions or layers which are positioned separately or remotely with respect to the light source, and a separate diffusing layer. This arrangement allows for the fabrication of lamps and bulbs that are efficient, reliable and cost effective and can provide an essentially omni-directional emission pattern, even with a light source comprised of a co-planar arrangement of LEDs. Additionally, this arrangement allows aesthetic masking or concealment of the appearance of the conversion regions or layers when the lamp is not illuminated. Some embodiments of the present invention utilize LED chips to provide one or more lighting components instead of providing the components through phosphor conversion. This can provide for lamps that can be operated with lower power and can be manufactured at lower cost. In one embodiment, a red lighting component can be provided by red emitting LEDs as opposed to a red conversion material.
Abstract:
Solid state lamps and bulbs comprising different combinations and arrangements of a light source, one or more wavelength conversion materials, regions or layers which are positioned separately or remotely with respect to the light source, and a separate diffuser. These are arranged on a heat sink in a manner that allows for the fabrication of lamps and bulbs that are efficient, reliable and cost effective and can provide an essentially omni-directional emission pattern, even with a light source comprised of a co-planar arrangement of LEDs. Additionally, this arrangement allows aesthetic masking or concealment of the appearance of the conversion regions or layers when the lamp is not illuminated. Various embodiments of the invention may be used to address many of the difficulties associated with utilizing efficient solid state light sources such as LEDs in the fabrication of lamps or bulbs suitable for direct replacement of traditional incandescent bulbs. Embodiments of the invention can be arranged to fit recognized standard size profiles such as those ascribed to commonly used lamps such as incandescent light bulbs, while still providing emission patterns that comply with ENERGY STAR® standards.