Abstract:
A camera module includes a lens holder (10), a lens module (20), a position detecting mechanism (30), and an image pick-up module (50). The lens holder has a recessed portion axially defined in an inner periphery thereof adjacent one end thereof. The lens module is axially movably received in the lens holder. The position detecting mechanism includes a light source (32) disposed in the periphery of the lens holder opposite to the recessed portion to emit a light, and a photo-detector (34) securely received in the recessed portion, and a processor (36). The photo-detector has a plurality of photo-detector components (342) arranged in the recessed portion parallel to each other so that each can separately receive the lights from the light source and transform the light into an electrical signal. The processor is electrically connected with each photo-detector component for transforming the electrical signal into an output signal.
Abstract:
A backlight system has a light guide plate. The light guide plate includes a transparent plate having a light incidence surface and an opposite light emitting surface, and a light transmittance enhancement layer. The light transmittance enhancement layer is provided on either or both of the light emitting surface and the light incidence surface, and is made of silicon dioxide or magnesium fluoride. The thickness of the light transmittance enhancement layer is in the range from 58˜69 nanometers.
Abstract:
The present coating system (100) provides a multilayer coating apparatus for coating an object (112). The multilayer coating apparatus includes a slide hopper (116, 140). The slide hopper includes a main body (116, 140), the main body essentially including a plurality of separate cavities (118, 120, 122) for receiving coating materials, a plurality of separate slots (124, 126, 128) in communication with the corresponding cavities, and a plurality of separate projection portions (130, 132, 134) formed on the slide hopper, the projection portions each having a substantially sloping slide surface (131, 133, 135) configured for allowing the particular coating material exiting from the slot to directly flow onto the object.
Abstract:
An exemplary article has a body made of steel, an electroless nickel layer electroless-plated on the body, and a diamond-like carbon layer formed on the electroless nickel layer. An exemplary method for manufacturing the article includes the steps of: providing a body made of steel; electroless plating an electroless nickel layer on the body; and forming a diamond-like carbon layer on the electroless nickel layer. The article has some excellent properties such as wear resistance, corrosion resistance and magnetic properties.
Abstract:
An exemplary camera module includes a lens holder (10), a lens module (20), a position detecting mechanism (30), and an image pick-up module (40). The lens module includes a lens barrel (11) and one lens received in the lens barrel. The lens barrel is axially movable received in the lens holder. The position detecting mechanism includes a conductive strip (32) disposed on outer periphery of the lens barrel along an axial direction, a number of conductive terminals (36), a number of electrical sources (34), and a processor (38). The conductive terminals are securely arranged on an inner periphery of the lens holder parallel to each other. A cathode of each electrical source is electrically connected to a corresponding conductive terminal. The processor is electrically connected with an anode of each electrical source. The image pick-up module is arranged so as to receive the light from the lens module.
Abstract:
A camera module includes a lens holder (10), a lens module (20), a position detecting mechanism (30), and an image pick-up module (50). The lens holder has a recessed portion axially defined in an inner periphery thereof adjacent one end thereof. The lens module is axially movably received in the lens holder. The position detecting mechanism includes a light source (32) disposed in the periphery of the lens holder opposite to the recessed portion to emit a light, and a photo-detector (34) securely received in the recessed portion, and a processor (36). The photo-detector has a plurality of photo-detector components (342) arranged in the recessed portion parallel to each other so that each can separately receive the lights from the light source and transform the light into an electrical signal. The processor is electrically connected with each photo-detector component for transforming the electrical signal into an output signal.
Abstract:
A heat collector includes a heat absorption surface, an opposite heat focus surface and one or more surrounding sides. A matrix of the heat collector is a thermally conductive material. There is a plurality of adiabatic pores mixed within the matrix. A relative concentration distribution of the adiabatic pores increases from the heat absorption surface to the heat focus surface, and decreases from the surrounding sides to a center of the heat collector. The shape of the heat collector can be rectangular, cylindrical, prismatic, plate-shaped, square, or polyhedral. The heat collector can draw heat generated from electrical components, and collect the generated heat for reuse in order to enhance energy efficiency.
Abstract:
A heat collector includes a heat absorption surface, an opposite heat focus surface and one or more surrounding sides. A matrix of the heat collector is a thermally conductive material. There is a plurality of adiabatic pores mixed within the matrix. A relative concentration distribution of the adiabatic pores increases from the heat absorption surface to the heat focus surface, and decreases from the surrounding sides to a center of the heat collector. The shape of the heat collector can be rectangular, cylindrical, prismatic, plate-shaped, square, or polyhedral. The heat collector can draw heat generated from electrical components, and collect the generated heat for reuse in order to enhance energy efficiency.
Abstract:
An integrated circuit package includes a die mounted on a substrate, an integrated heat spreader set above the die, and an array of carbon nanotubes mounted between the die and the integrated heat spreader. The integrated heat spreader is fixed on the substrate, and includes an inner face. The array of carbon nanotubes is formed on the inner face of the integrated heat spreader. Top and bottom ends of the carbon nanotubes perpendicularly contact the integrated heat spreader and the die respectively. Each carbon nanotube can be capsulated in a nanometer-scale metal having a high heat conduction coefficient.
Abstract:
An temperature control apparatus includes a temperature detecting element (50), a control circuit (60), and a thermoelectric unit (70). The temperature detecting element contacts to a first surface (82) of a predetermined target (800). The control circuit is electrically connected to the temperature detecting element. The thermoelectric unit is electrically connected to the control circuit, and contacts a second surface of the predetermined target. The temperature detecting element detects a temperature signal. The temperature signal is input into the control circuit. The control circuit changes the temperature signal into an electrical current signal, and the electrical current signal drives the thermoelectric unit to control the temperature of the predetermined target.