Abstract:
The invention provides a system that associates data files with one another effectively to visually represent a relation among the data files and allows a user to easily understand relationship of contents of the data files. The system determines whether there is a parent data file for a selected retrieval object data file with reference to a contract association table and, if the parent data file is present, changes the retrieval object to the parent data file and repeats the processing. If the parent data file is not present, the system stores a present retrieval object data file as display data, that is, store a top data file as display data. Then, the system retrieves all data files associated with the top data file, stores the data files as display data, generates a relation diagram of the data files, and transmits the relation diagram to a user terminal.
Abstract:
A rotary electric machine includes: a stator, a rotor and rotor fans contained in a closed type frame. The cooling gas is circulated in the frame by the rotor fans and warmed as a result of heat exchange with the stator and the rotor is cooled by a gas cooler. A heat pump is adapted to use cooling water or ambient air as high temperature heat source and liquid coolant as low temperature heat source. A liquid coolant circulation system for supplying liquid coolant to the heat exchange section of the gas cooler is provided. The liquid coolant is cooled by the heat pump and is supplied to the heat exchange section of the gas cooler by means of the coolant circulation system.
Abstract:
A steam turbine that can effectively operate with the steam at the higher temperatures, while maintaining the strength of turbine constituent components despite the high steam temperature of the steam is provided. The steam turbine includes a casing, a rotor, a plurality of turbine stages, a steam pass, a nozzle box, and a cover plate. The rotor is rotatably installed in the casing. The turbine stages are disposed in the turbine, at least one of the turbine stages including a turbine nozzle and including a moving blade that is fixed to the rotor. The steam pass includes the turbine stages. The nozzle box is placed in a space between the casing and the rotor for providing a heated steam into the steam pass. The cover plate is arranged along an outer surface of the nozzle box.
Abstract:
A steam turbine and steam turbine plant that can utilize a relatively higher reheated steam, such as about 1300 degrees Fahrenheit or higher, is provided. A steam turbine plant includes a steam generator generating high pressure steam and reheated steam, a high pressure turbine driven by the high pressure steam generated by the steam generator, and an intermediate pressure turbine driven by the reheated steam. A steam bleed line coupled with the high pressure turbine bleeds steam from the high pressure turbine as cooling steam. The intermediate pressure turbine includes a heated steam inlet for receiving the reheated steam, and a cooling steam inlet for receiving the cooling steam. The cooling steam cools components of the intermediate pressure turbine that receive the reheated steam. A low pressure turbine is driven by steam discharged from the intermediate pressure turbine, and a condenser condenses steam discharged from the low pressure turbine into water as a condensate. A plurality of feedwater heaters heat the condensate to produce feedwater provided to the steam generator.
Abstract:
An intermediate-pressure turbine is divided into a high-temperature, high-pressure side high-temperature, intermediate-pressure turbine section 11a and a low-temperature, low-pressure side low-temperature, intermediate-pressure turbine section 11b, the component members of the high-temperature, intermediate-pressure turbine section 11a are formed of austenitic heat-resistant steels or Ni-based alloys, and the high-temperature, intermediate-pressure turbine section 11a is operated by steam having a temperature of 650° C. or more. Other turbines are mainly formed of ferritic heat-resistant steels. Thus, a steam turbine power plant having high thermal efficiency and being economical can be provided.
Abstract:
Water is flowed down into heat transfer tubes from their inlet ports to form flowing water films. The flowing water is evaporated from the flowing water films, thereby cooling combustion air of a gas turbine that flows in the channel. Water vapor generated in the heat transfer tubes is absorbed by an absorber by using an aqueous lithium bromide solution. Water vapor contained in the aqueous solution supplied from the absorber is extracted. The extracted water vapor is condensed to water by a condenser through which cooling water flows. The obtained water is supplied to the water tank. A condensed aqueous solution from which the water vapor has been removed by the generator is supplied to the absorber.
Abstract:
A latent heat accumulation system having a transfer mechanism comprises a production tank in which water is put in direct contact with an antifreezing liquid which does not combine with the water, has a specific gravity greater than that of the water and is cooled to a preset temperature level, thus producing ice particles, a recovery section, formed at a lower part of the production tank, for recovering the antifreezing liquid descending within the production tank, an upward pipe, connected to the production tank, for guiding upward a two-phase stream of the water and ice particles within the production tank, a transfer pipe, connected to the upward pipe, for transferring the two-phase stream to a specified place, a reservoir tank for storing the two-phase stream transferred via the transfer pipe, a water circulation system for draining the water from the reservoir tank and introducing the drained water into the production tank, and an antifreezing fluid circulation system for cooling the antifreezing fluid recovered by the recovery section and feeding the cooled antifreezing fluid into the production tank for bringing the antifreezing fluid into direct contact with the water.
Abstract:
A carbon-dioxide-capture-type steam power generation system 1 according to the present invention comprises a boiler 6 producing an exhaust gas 5 by combusting a fuel 2 and having a flue 8; an absorbing unit 40 being configured to absorb the carbon-dioxide contained in the exhaust gas 5 into an absorbing solution; and a regenerating unit 44 being configured to release the carbon dioxide gas from the absorbing solution absorbing the carbon dioxide and discharge the released carbon dioxide gas. Further, in this system, a reboiler 49 is provided for receiving a heating-medium as heat source, producing a steam 43 and supplying the produced steam 43 to the regenerating unit 44. Additionally, in the flue 8 of the boiler 6, a boiler-side heat exchanger 61 is provided for heating the heating-medium by the exhaust gas 5 passing therethrough.
Abstract:
According to one embodiment, a solar heat collecting apparatus comprises a first heat exchanging unit and a second heat exchanging unit. The first heat exchanging unit includes a first pipe through which a heat medium flows and a first heat receiving face which receives heat of sunlight reflected by a plurality of reflecting units. The first heat exchanging unit heats the heat medium flowing through the first pipe by using heat of the first heat receiving face. A second heat exchanging unit includes a second pipe through which the heat medium heated by the first heat exchanging unit flows, a second heat receiving face which receives heat of the sunlight reflected by a plurality of reflecting units, and a nozzle provided to the second pipe to discharge the heat medium flowing through the second pipe toward a back face of the second heat receiving face.
Abstract:
A steam turbine 10 of an embodiment has seal rings 60 between an inlet sleeve 40 for introducing steam and an inner casing 20 and an outer casing 21 into which the inlet sleeve 40 is inserted. The seal rings 60 have high-temperature side seal rings 70 which are disposed their inner circumferences contacted to the outer circumference of the inlet sleeve 40, and low-temperature side seal rings 80 which are formed to have inner and outer diameters larger than those of the high-temperature side seal rings 70 and disposed with their outer circumferences contacted to the inner casing 20 or the outer casing 21. A thermal barrier layer 90 is disposed between the inner circumferences of the high-temperature side seal rings 70 and the outer circumference of the inlet sleeve 40 and between the high-temperature side seal rings 70 and the low-temperature side seal rings 80.