摘要:
Systems and methods ablate electrically conductive links using laser pulses with optimized temporal power profiles and/or polarizations. In certain embodiments, the polarization property of a laser beam is set such that coupling between the laser beam and an electrically conductive link reduces the pulse energy required to ablate the electrically conductive link. In one such embodiment, the polarization is selected based on a depth of a target link structure. In another embodiment, the polarization changes as deeper material is removed from a target location. In addition, or in other embodiments, a first portion of a temporal power profile of a laser beam includes a rapid rise time to heat an upper portion of an electrically conductive link so as to form cracks in a passivation layer over upper corners of the electrically conductive link, without forming cracks at lower corners of the electrically conductive link.
摘要:
A method is used in processing structures on or within a semiconductor substrate using N series of laser pulses to obtain a throughput benefit, wherein N≧2. The structures are arranged in a plurality of substantially parallel rows extending in a generally lengthwise direction. The N series of laser pulses propagate along N respective beam axes until incident upon selected structures in N respective distinct rows. The method determines a joint velocity profile for simultaneously moving in the lengthwise direction the N laser beam axes substantially in unison relative to the semiconductor substrate so as to process structures in the N rows with the respective N series of laser pulses, whereby the joint velocity profile is such that the throughput benefit is achieved while ensuring that the joint velocity profile represents feasible velocities for each of the N series of laser pulses and for each of the respective N rows of structures processed with the N series of laser pulses. A semiconductor substrate is designed to have a structure layout that takes advantage of the N-fold processing parallelism provided by the N laser beams.
摘要:
Methods and systems process a semiconductor substrate having a plurality of structures to be selectively irradiated with multiple laser beams. The structures are arranged in a plurality of substantially parallel rows extending in a generally lengthwise direction. The method generates a first laser beam that propagates along a first laser beam axis that intersects a first target location on or within the semiconductor substrate. The method also generates a second laser beam that propagates along a second laser beam axis that intersects a second target location on or within the semiconductor substrate. The second target location is offset from the first target location in a direction perpendicular to the lengthwise direction of the rows by some amount such that, when the first target location is a structure on a first row of structures, the second target location is a structure or between two adjacent structures on a second row distinct from the first row. The method moves the semiconductor substrate relative to the first and second laser axes in a direction approximately parallel to the rows of structures, so as to pass the first target location along the first row to irradiate for a first time selected structures in the first row, and so as to simultaneously pass the second target location along the second row to irradiate for a second time structures previously irradiated by the first laser beam during a previous pass of the first target location along the second row.
摘要:
A laser processing system includes a beam positioning system to align beam delivery coordinates relative to a workpiece. The beam positioning system generates position data corresponding to the alignment. The system also includes a pulsed laser source and a beamlet generation module to receive a laser pulse from the pulsed laser source. The beamlet generation module generates a beamlet array from the laser pulse. The beamlet array includes a plurality of beamlet pulses. The system further includes a beamlet modulator to selectively modulate the amplitude of each beamlet pulse in the beamlet array, and beamlet delivery optics to focus the modulated beamlet array onto one or more targets at locations on the workpiece corresponding to the position data.
摘要:
Methods and systems selectively irradiate structures on or within a semiconductor wafer using multiple laser beams. The structures may be laser-severable conductive links, and the purpose of the irradiation may be to sever selected links. The structures are arranged in rows and may be processed in either an on-axis mode or a cross-axis mode. In the on-axis mode, the beam spots fall on structures in the same row as they move along the row. In the cross-axis mode, the beam spots fall on structures in different rows as they move along the rows.
摘要:
Systems and methods automatically modify a laser-based system for processing target specimens such as semiconductor wafers. In one embodiment, the laser-based system detects a trigger associated with a processing model. The processing model corresponds to a set of wafers. In response to the trigger, the system automatically adjusts one or more system parameters based on the processing model. The system then uses the modified system parameters to selectively irradiate structures on or within at least one wafer in the set of wafers. In one embodiment, the trigger includes variations in a thermal state related to a motion stage. In response to the variations in the thermal state, the system operates the motion stage in a series of movements until a thermal equilibrium threshold is reached. The sequence of movements may, for example, simulate movements used to process a particular wafer.
摘要:
Multiple laser beams selectively irradiate electrically conductive structures on or within a semiconductor substrate. The structures are arranged in a plurality of substantially parallel rows extending in a generally lengthwise direction. One method propagates first and second laser beams along respective first and second propagation paths having respective first and second axes incident at respective first and second locations on or within the semiconductor substrate at a given time. The first and second locations are either on a structure in their respective rows or between two adjacent structures in their respective rows, which are distinct. The second location is offset from the first location by some amount in the lengthwise direction of the rows. The method moves the laser beam axes substantially in unison in the lengthwise direction of the rows relative to the semiconductor substrate, so as to selectively irradiate structures in the rows with the laser beams.