Abstract:
An image processing apparatus of the present invention includes: a video input section to which live video obtained by picking up an image of an object is inputted; a frame interpolation processing section which, by inserting an interpolated image between images of frames constituting the live video, performs processing for generating and outputting interpolated video of a frame rate set in advance; and a control section which, when an instruction for freezing video displayed on a display section is made, operates so as to cause a still image of a frame constituting the live video to be displayed on the display section.
Abstract:
An endoscope apparatus 1 includes a main body 4 to which a scope having an image pickup device at a distal end portion 8 of an insertion portion 7b is detachably attachable, a video signal processing section 22, a display section 5 and a control section 21. The control section 21 displays on the display section 5 a message for instructing a user to light-shield the distal end portion 8 according to an instruction for starting initialization processing to acquire a reference image of the image pickup device, acquires the reference image with the distal end portion 8 light-shielded and stores the acquired reference image in a memory 27.
Abstract:
A semiconductor memory device includes a cell array having a plurality of memory cells grouped into a plurality of cell blocks and arranged in a matrix form, a plurality of word lines, a plurality of bit lines, bit line sense amplifiers (S/A), a cell block selection circuit, a plurality of data I/O lines, row decoders, a plurality of column selection signal lines, column decoders and a data buffer circuit. The data buffer circuit includes a first precharge circuit, connected to the data I/O lines, for precharging the data I/O lines to the same potential as a precharge potential of the bit lines, a second precharge circuit, connected to the data I/O lines, for precharging the data I/O lines to a potential different from the precharge potential of the bit lines, and selective drive circuit for generating control signals to be supplied to the first and second precharge circuit, and selectively driving the first and second precharge circuits to sense the data read out to the data I/O lines on the basis of the control signals.
Abstract:
According to the present invention, a data bus common to a plurality of memory cell arrays is formed by selecting a column so as to prevent a data collision from occurring. Specifically, two memory cell arrays have each of data buses in common. A column decoder is supplied with a control signal to control a column selection logic circuit. The column selection logic circuit is so controlled that the data read out to the data buses in response to the control signal is prevented from colliding with each other during the simultaneous access to the two cell arrays.
Abstract:
According to the invention, a well region is formed on a semiconductor substrate. An n.sup.+ -type first semiconductor region is formed in the well region, and an input pad for receiving an external signal is connected near the first semiconductor region. This input pad is connected to an input circuit of an integrated circuit constituted by an inverter circuit and to an external terminal for receiving an external signal. N.sup.+ -type second semiconductor regions are formed in the well region located on both sides of the first semiconductor region. A ground potential Vss is applied to these second semiconductor regions. A p.sup.+ -type third semiconductor region is formed around these second semiconductor regions in the well region. The ground potential is applied to the third semiconductor region. Therefore, a parallel circuit formed by a parasitic transistor and a parasitic diode is formed between the input pad and the ground potential. The parasitic transistor is turned on upon electrostatic discharge, and the parasitic diode is turned on when a negative potential for test is applied to the input pad, thereby preventing an erroneous operation of a transistor arranged on the semiconductor substrate.