Abstract:
An apparatus and method is provided to enable precision and fast laser frequency tuning. For instance, a fast tunable slave laser may be dynamically offset-locked to a reference laser line using an optical phase-locked loop. The slave laser is heterodyned against a reference laser line to generate a beatnote that is subsequently frequency divided. The phase difference between the divided beatnote and a reference signal may be detected to generate an error signal proportional to the phase difference. The error signal is converted into appropriate feedback signals to phase lock the divided beatnote to the reference signal. The slave laser frequency target may be rapidly changed based on a combination of a dynamically changing frequency of the reference signal, the frequency dividing factor, and an effective polarity of the error signal. Feed-forward signals may be generated to accelerate the slave laser frequency switching through laser tuning ports.
Abstract:
A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency Ω1 that is phase modulated at a frequency Ω2.
Abstract:
An endoscope apparatus includes: a reading unit which reads video data and control data from a recording medium, the recording medium containing the video data including a plurality of image data and the control data used to control a measurement operation; a measuring unit which performs the measurement operation on the basis of the image data of the video data read by the reading unit; and a control unit which controls the measuring unit on the basis of the control data read by the reading unit.
Abstract:
A semiconductor integrated circuit device is described. The semiconductor device includes a switching signal generator having an output terminal which outputs a switching signal to change refresh modes. The semiconductor device also includes a first address buffer having an output terminal which outputs a first address signal, a second address buffer having an output terminal which outputs a second signal, a decoder having a first input terminal which receives the first address signal and having a second input terminal, a sense amplifier controller having an input terminal, and a switch having a first input terminal which receives the switching signal, a second input terminal which receives the second address signal, a first output terminal which outputs the second address signal to the second input terminal of the decoder and a second output terminal which outputs the second address signal to the input terminal of the sense amplifier controller, the switch being controlled by the switching signal.
Abstract:
A semiconductor memory device includes a buffer for outputting an address signal and a decoding circuit having an input for receiving the address signal. A switch electrically connects the buffer to the input of the decoding circuit if a refresh mode specifying signal specifies a first data refresh mode, and electrically disconnects the buffer from the input of the decoding circuit if the refresh mode specifying signal specifies a second data refresh mode different from the first data refresh mode. An activating/deactivating circuit activates the input of the decoding circuit if the refresh mode specifying signal specifies the first data refresh mode and deactivates the input of the decoding circuit if the refresh mode specifying signal specifies the second data refresh mode.
Abstract:
A semiconductor memory comprises a dynamic type memory cell array arranged to form a matrix and provided with word lines commonly connected to memory cells of respective columns and bit lines commonly connected to memory cells of respective rows, a dummy cell section having a first set of dummy word lines connected to respective complimentary bit line pairs of said memory cell array by way of respective first capacitances and a second set of dummy word lines connected to respective complementary bit line pairs of said memory cell array by way of respective second capacitances, a dummy word line potential control circuit capable of optionally controlling the mode of driving selected dummy word lines when said word lines of said memory cell array are activated and sense amplifiers connected to the respective complementary bit line pairs of said memory cell array for reading data from selected memory cells of the memory cell array onto the related bit line.
Abstract:
Here is disclosed a dynamic semiconductor memory of high integration density, which has parallel word lines and parallel bit lines formed on a substrate. The bit lines include a pair of bit lines. A memory cell is coupled to a word line and to one bit line of the bit-line pair. The memory cell is composed of MOSFETs of a submicron size. A sense amplifier section is connected to the pair of bit lines, and senses and amplifies the potential difference between the pair of bit lines in a data readout mode. The amplifier section has a BIMOS structure, having MOSFETs and bipolar transistors. It has a driver section comprised of bipolar transistors.
Abstract:
A semiconductor memory comprises a dynamic type memory cell array arranged to form a matrix and provided with word lines commonly connected to memory cells of respective columns and bit lines commonly connected to memory cells of respective rows, a dummy cell section having a first set of dummy word lines connected to respective complimentary bit line pairs of said memory cell array by way of respective first capacitances and a second set of dummy word lines connected to respective complementary bit line pairs of said memory cell array by way of respective second capacitances, a dummy word line potential control circuit capable of optionally controlling the mode of driving selected dummy word lines when said word lines of said memory cell array are activated and sense amplifiers connected to the respective complementary bit line pairs of said memory cell array for reading data from selected memory cells of the memory cell array onto the related bit line.
Abstract:
A monolithic nonplanar ring oscillator (NPRO) laser with a large piezo-electric tuning range and high frequency slew rate, denoted as a μNPRO, is described. A tuning range of 3.5 GHz with 192 volts applied, corresponding to a tuning coefficient of 18.2 MHz/volt was experimentally demonstrated. This performance was achieved by making the solid-state gain element small, with a small distance between a piezo-electric element bonded to the solid-state gain element and a first lase plane in the solid-state gain element. The entire nonplanar ring lasing path within the solid-state gain element may lie within the half of the solid-state gain element closest to the bonded piezo-electric element. This large frequency modulation span and wide frequency modulation bandwidth, combined with unsurpassed coherence and high power, make this an attractive laser for frequency-modulated continuous-wave (FMCW) LIDAR.
Abstract:
A method and system for stabilizing a laser to a frequency reference with an adjustable offset. The method locks a sideband signal generated by passing an incoming laser beam through the phase modulator to a frequency reference, and adjusts a carrier frequency relative to the locked sideband signal by changing a phase modulation frequency input to the phase modulator. The sideband signal can be a single sideband (SSB), dual sideband (DSB), or an electronic sideband (ESB) signal. Two separate electro-optic modulators can produce the DSB signal. The two electro-optic modulators can be a broadband modulator and a resonant modulator. With a DSB signal, the method can introduce two sinusoidal phase modulations at the phase modulator. With ESB signals, the method can further drive the optical phase modulator with an electrical signal with nominal frequency Ω1 that is phase modulated at a frequency Ω2.