Abstract:
An exemplary nonvolatile memory array comprises a substrate and a plurality of memory cells formed on the substrate, each of the memory cells being addressable via at least first and second conductors during operations. An exemplary memory cell in the exemplary memory array includes a ferromagnetic annular data layer having an opening, the opening enabling the second conductor to electrically contact the first conductor, an intermediate layer on at least a portion of the annular data layer, and a soft reference layer on at least a portion of the intermediate layer.
Abstract:
This invention provides a thermal-assisted switching magnetic memory storage device. In a particular embodiment, a cross-point array of conductive rows and columns is provided with offset tunnel junction magnetic memory cells provided proximate to the intersections between the rows and columns. A looping write conductor is provided close to, but not in electrical contact with each memory cell. The looping write conductor loops across the top and bottom of each memory cell. Each magnetic memory cell provides a magnetic data layer characterized by a material wherein the coercivity is decreased upon an increase in temperature, an intermediate layer, and a reference layer. The magnetic fields provided by the looping write conductor during a write operation are not sufficient to alter the magnetic orientation of an unheated data layer, but may alter the data layer of a memory cell warmed by a bias current tunneling through the memory cell.
Abstract:
A memory device including an array of magnetic storage cells is disclosed. Each magnetic storage cell in the array includes a set of conductors used to write data to a storage cell and a second set of conductors used to heat the magnetic storage cell and read data from the magnetic storage cell. The magnetic storage cells can be used in electronic systems such as a computer system or consumer electronic system.
Abstract:
The invention includes a stacked magnetic memory structure. The magnetic memory structure includes a stacked magnetic memory structure. The first layer includes a first plurality of magnetic tunnel junctions. A second layer is formed adjacent to the first layer. The second layer includes a second plurality of magnetic tunnel junctions. The stacked magnetic memory structure further includes a common first group conductor connected to each of the first plurality of magnetic tunnel junctions and the second plurality of magnetic tunnel junctions.
Abstract:
A magnetic tunnel junction is fabricated by forming pinned and sense layers; and re-setting a magnetization vector of at least one of the layers.
Abstract:
An exemplary memory array including a plurality of memory cells, each of the memory cells comprises a first ferromagnetic layer, a second ferromagnetic layer spaced apart from the first ferromagnetic layer by a non-magnetic separating layer and being magnetically coupled to the first ferromagnetic layer by demagnetizing fields from the first ferromagnetic layer, a spacer layer above the second ferromagnetic layer, and a reference layer above the spacer layer. The first ferromagnetic layer, non-magnetic separating layer, and second ferromagnetic layer in combination function as a data layer of the memory cell.
Abstract:
A display element includes a variable optical element that changes appearance in response to changes in current, and a programmable resistance in series with the variable optical element. The resistance of the programmable resistance decreases in response to a first current in a first direction. The resistance of the programmable resistance increases in response to a second current in a second direction.
Abstract:
The invention includes a stacked magnetic memory structure. The magnetic memory structure includes a stacked magnetic memory structure. The first layer includes a first plurality of magnetic tunnel junctions. A second layer is formed adjacent to the first layer. The second layer includes a second plurality of magnetic tunnel junctions. The stacked magnetic memory structure further includes a common first group conductor connected to each of the first plurality of magnetic tunnel junctions and the second plurality of magnetic tunnel junctions.
Abstract:
A four-conductor MRAM device comprising an array of memory cells, each of the memory cells including a first magnetic layer, a dielectric, and a second magnetic layer; a plurality of local column sense lines wherein one is electrically connected to the first magnetic layer of the array of memory cells; a plurality of local row sense lines wherein one of the local row sense lines is electrically connected to the second magnetic layer of the array of memory cells; a plurality of global column write lines parallel to the plurality of local column sense lines; a plurality of global row write lines parallel to the plurality of local row sense lines; and wherein the plurality of local column sense lines and the plurality of local row sense lines are connected to read data from the array of memory cells and the plurality of global column write lines and the plurality of global row write lines are connected to write data to the array of memory cells.
Abstract:
An exemplary nonvolatile memory array comprises a substrate and a plurality of memory cells formed on the substrate, each of the memory cells being addressable via at least first and second conductors during operations. An exemplary memory cell in the exemplary memory array includes a ferromagnetic annular data layer having an opening, the opening enabling the second conductor to electrically contact the first conductor, an intermediate layer on at least a portion of the annular data layer, and a soft reference layer on at least a portion of the intermediate layer.