Abstract:
The present application discloses a new sialosyl glyceride having the following formula, which compound is useful as a remedy for nervous diseases, has an excellent compatability with the living bodies, and is easily producible. ##STR1## wherein R.sup.1 represents a hydrogen atom or XCH.sub.2 CO-- (X being a halogen atom), R.sup.2 represents an alkali metal, a hydrogen atom or a lower alkyl group, R.sup.3 represents a hydrogen atom or --CO(CH.sub.2)mCH.sub.3, R.sup.4 represents --CO(CH.sub.2)mCH.sub.3 amd m and n each represents a number of 0 to 30.
Abstract:
A magneto-optic recording medium including a transparent substrate and a non-oxide dielectric layer formed thereon is provided. The dielectric layer includes a first dielectric material of the type which exhibits cracks running in a generally radial direction when deposited on a surface and which is designated dielectric Group A and a second dielectric material which exhibits cracks running in a generally tangential direction when deposited on a surface and which is designated dielectric Group B. The dielectric layer may be separate layers or a mixture of the two dielectric materials.
Abstract:
A leucylalanyarginine derivative represented by the formula, ##STR1## wherein R.sub.1 represents hydrogen or an amino-protecting group; R.sub.2 and R.sub.3 represent hydrogen or guanidino-protecting groups; and R.sub.4 represents naphthyl. The above compound is useful as an excellent substrate for various enzymes, such as trypsin, plasmin, kallikrein, urokinase, Cl-esterase and the like. Accordingly, the activity of enzymes can be measured by use of said compound as a substrate.
Abstract:
A valylleucyllysine derivative represented by the formula, ##STR1## wherein R.sub.1 represents hydrogen or benzoyl and R.sub.2 represented naphthyl. The above compound is useful as an excellent substrate for various anzymes, such as, trypsin, plasmin, kallikrein, urokinase, Cl-esterase and the like. Accordingly, the activity of enzymes can be measured by use of said compound as a substrate.
Abstract:
To provide a technique that improves an efficiency of using a magnetic field in a brushless electric machine. A brushless electric machine includes a first member having N sets (N is an integer of 2 or more) of electromagnetic groups, and a second member that has N+1 sets of magnetic field forming member groups and can move in a predetermined moving direction in relative to the first member. One set of the electromagnetic coil group and one set of the magnetic field forming member group are alternately disposed along a direction perpendicular to the moving direction.
Abstract:
The brushless electric machine includes a first drive member (30U) having a plurality of permanent magnets (32U); a second drive member (10) having a plurality of electromagnetic coils and capable of movement relative to the first drive member (30U); and a third drive member (30L) disposed at the opposite side from the first drive member (30U) with the second drive member (10) therebetween. The second drive member (10) has magnetic sensors (40A, 40B) for detecting the relative position of the first and second drive members. The third drive member (30L) has at locations facing the permanent magnets of the first drive member (30U) a plurality of magnetic field strengthening members (32L) for strengthening the magnetic field at the location of the second drive member (10) in conjunction with the permanent magnets.
Abstract:
The brushless electric machine includes a first drive member (30U) having a plurality of permanent magnets (32U); a second drive member (10) having a plurality of electromagnetic coils and capable of movement relative to the first drive member (30U); and a third drive member (30L) disposed at the opposite side from the first drive member (30U) with the second drive member (10) therebetween. The second drive member (10) has magnetic sensors (40A, 40B) for detecting the relative position of the first and second drive members. The third drive member (30L) has at locations facing the permanent magnets of the first drive member (30U) a plurality of magnetic field strengthening members (32L) for strengthening the magnetic field at the location of the second drive member (10) in conjunction with the permanent magnets.
Abstract:
The brushless electric machine includes a first drive member (30U) having a plurality of permanent magnets (32U); a second drive member (10) having a plurality of electromagnetic coils and capable of movement relative to the first drive member (30U); and a third drive member (30L) disposed at the opposite side from the first drive member (30U) with the second drive member (10) therebetween. The second drive member (10) has magnetic sensors (40A, 40B) for detecting the relative position of the first and second drive members. The third drive member (30L) has at locations facing the permanent magnets of the first drive member (30U) a plurality of magnetic field strengthening members (32L) for strengthening the magnetic field at the location of the second drive member (10) in conjunction with the permanent magnets.
Abstract:
The brushless motor includes a stator having a electromagnetic coil and a position sensor; an axis fixed to the stator; and a rotor having a permanent magnet. The rotor rotates around the axis. The rotor is linked to a driven member that is driven by the brushless motor.
Abstract:
In order to provide the anti-retrovirus active compound with low anti-coagulant action and low cytotoxicity, compounds comprising glycoside or the salt thereof wherein lipid is linked to position 2 of sialic acid having all hydroxyl groups at positions 4, 7, 8 and 9 completely sulfated, or KDN (2-keto-3-deoxy-D-glycero-2-nononic acid) having all hydroxyl groups at positions 4, 5, 7, 8 and 9 completely sulfated are provided.