摘要:
An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distinguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the apparatus provides chromatic dispersion to the input light. The modified cone shape of the mirror can be designed so that the apparatus provides a uniform chromatic dispersion to light in the same channel of a wavelength division multiplexed light. The mirror can be moved in a direction perpendicular to an angular dispersion direction of the VIPA generator, to change the amount of chromatic dispersion provided to the input light.
摘要:
An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distinguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the apparatus provides chromatic dispersion to the input light. The modified cone shape of the mirror can be designed so that the apparatus provides a uniform chromatic dispersion to light in the same channel of a wavelength division multiplexed light.
摘要:
An optical wavelength division multiplexed system uses wavelength splitters to split channels included in input light into different paths within the system. Odd-numbered channels are split into one path, and even-numbered channels are split into another path, providing increased isolation between channels. Using filters, the system then drops one or more of the isolated, split channels into paths referred to as dropped paths and allows the remaining channels to continue through the filters into output paths. The dropped paths are then combined into one, common dropped path, and the output paths are also combined into one, common output path.
摘要:
Various configurations of a virtually imaged phased array (VIPA) generator in combination with a mirror to compensate for chromatic dispersion. A VIPA generator produces a light traveling from the VIPA generator. In some embodiments, a variable curvature mirror is positioned to reflect the light back to the VIPA generator. A rotation axis around which the mirror is rotated and a translation path for the rotation axis are provided, to change the curvature of the mirror where the output light is reflected. In other embodiments, a plurality of mirrors have different surface curvatures. A holder has a rotation axis and holds the plurality of mirrors equidistantly from the rotation axis. The holder is rotatable around the rotation axis to bring a different, respective mirror in position to reflect light produced by a VIPA generator back to the VIPA generator. In other embodiments, a rotating mirror is rotatable about a rotation axis to reflect light produced by a VIPA generator to a respective fixed mirror. In still other embodiments, an off-axis parabolic mirror is rotatable about a rotation axis to reflect light produced by a VIPA generator to a respective fixed mirror.
摘要:
Various configurations of a virtually imaged phased array (VIPA) generator in combination with a mirror to compensate for chromatic dispersion. A VIPA generator produces a light traveling from the VIPA generator. In some embodiments, a variable curvature mirror is positioned to reflect the light back to the VIPA generator. A rotation axis around which the mirror is rotated and a translation path for the rotation axis are provided, to change the curvature of the mirror where the output light is reflected. In other embodiments, a plurality of mirrors have different surface curvatures. A holder has a rotation axis and holds the plurality of mirrors equidistantly from the rotation axis. The holder is rotatable around the rotation axis to bring a different, respective mirror in position to reflect light produced by a VIPA generator back to the VIPA generator. In other embodiments, a rotating mirror is rotatable about a rotation axis to reflect light produced by a VIPA generator to a respective fixed mirror. In still other embodiments, an off-axis parabolic mirror is rotatable about a rotation axis to reflect light produced by a VIPA generator to a respective fixed mirror.
摘要:
An optical apparatus for producing chromatic dispersion. The apparatus includes a virtually imaged phased array (VIPA) generator, a mirror and a lens. The VIPA generator receives an input light at a respective wavelength and produces a corresponding collimated output light traveling from the VIPA generator in a direction determined by the wavelength of the input light, the output light thereby being spatially distinguishable from an output light produced for an input light at a different wavelength. The mirror has a cone shape, or a modified cone shape. The lens focuses the output light traveling from the VIPA generator onto the mirror so that the mirror reflects the output light. The reflected light is directed by the lens back to the VIPA generator. In this manner, the: apparatus provides chromatic dispersion to the input light. The modified cone shape of the mirror can be designed so that the apparatus provides a uniform chromatic dispersion to light in the. same channel of a wavelength division multiplexed light. The mirror can be moved in a direction perpendicular to an angular dispersion direction of the VIPA generator, to change the amount of chromatic dispersion provided to the input light.
摘要:
A virtually imaged phased array (VIPA) operating as a wavelength splitter to separate individual carriers from a wavelength division multiplexed (WDM) light. The VIPA has first and second surfaces. The second surface has a reflectivity which causes a portion of light incident thereon to be transmitted therethrough. The VIPA receives an input light at a respective wavelength within a continuous range of wavelengths. The first and second surfaces are positioned so that the input light is reflected a plurality of times between the first and second surfaces to cause a plurality of lights to be transmitted through the second surface. The plurality of transmitted lights interfere with each other to produce an output light which is spatially distinguishable from an output light produced for an input light having any other wavelength within the continuous range of wavelengths. The reflectivity of the second surface varies along the second surface so that the output light has a desired beam profile, such as an approximately symmetric beam profile, along the second surface. A phase adjustment buffer layer can be provided to cause the lights reflected from the second surface to the first surface to have a uniform optical phase along the second surface. Further, a phase adjustment layer can be provided to cause the plurality of transmitted lights to have a uniform optical phase along the second surface.
摘要:
A virtually imaged phased array (VIPA) operating as a wavelength splitter to separate individual carriers from a wavelength division multiplexed (WDM) light. The VIPA has first and second surfaces. The second surface has a reflectivity which causes a portion of light incident thereon to be transmitted therethrough. The VIPA receives an input light at a respective wavelength within a continuous range of wavelengths. The first and second surfaces are positioned so that the input light is reflected a plurality of times between the first and second surfaces to cause a plurality of lights to be transmitted through the second surface. The plurality of transmitted lights interfere with each other to produce an output light which is spatially distinguishable from an output light produced for an input light having any other wavelength within the continuous range of wavelengths. The reflectivity of the second surface varies along the second surface so that the output light has a desired beam profile, such as an approximately symmetric beam profile, along the second surface. A phase adjustment buffer layer can be provided to cause the lights reflected from the second surface to the first surface to have a uniform optical phase along the second surface. Further, a phase adjustment layer can be provided to cause the plurality of transmitted lights to have a uniform optical phase along the second surface.
摘要:
Light input from a first optical fiber is split up into two orthogonally-polarized beams by a polarizing prism. Their polarization planes are rotated by a 45-degree Faraday rotator. The beams are refracted by a birefringent wedge as extraordinary light, and finally output to a fourth optical fiber. The light output from the fourth optical fiber is refracted by a birefringent wedge as ordinary light, and enters a second optical fiber. Similarly, the light from the second optical fiber is led to a third optical fiber, thereby implementing a capability of an optical circulator. Light output from the first optical fiber can be input to the third optical fiber by inverting a rotation angle of the 45-degree Faraday rotator. As a result, it serves as a magneto-optical switch.
摘要:
An apparatus which includes a transparent material and a compensator. Light travels through the transparent material for an optical distance. The compensator is attached to the transparent material and experiences thermal expansion which deforms the transparent material to reduce changes in the optical distance caused by changes in temperature of the transparent material. The optical distance is defined as a product of the refractive index of the transparent material and the physical length of an optical path travelled by the light through the transparent material. Preferably, the compensator reduces changes in the optical distance so that the optical distance is maintained to be approximately constant.