Abstract:
A method of determining and shifting to an optimal gear in a vehicle prior to entering a curve in a vehicle which comprises an automatic transmission. A curve speed limit is determined for an anticipated curve which is recognized by a navigation device, an anticipated road pattern and dependent on the vehicle and curve or road data, and a sportiness indicator (Ftyp). For each anticipated curve, an actual, optimal gear is determined, based on the determined curve speed limit and the sportiness indicator (FTyp) and, after determining the optimal gear, the method performs a check to determine whether or not the optimal gear deviates from the engaged gear (RGA_DEST). When a deviation is recognized and a driver reaction, which causes a deceleration of the vehicle and/or a reduction of the vehicle speed, is present, a down shift down to the actual, optimal gear occurs.
Abstract:
Methods and apparatus for recovery and reuse of reagents are provided herein. In some embodiments, a system for processing substrates may include a process chamber for processing a substrate; a reagent source coupled to the process chamber to provide a reagent to the process chamber; and a reagent recovery system to collect, and at least one of purify or concentrate the reagent recovered from an effluent exhausted from the process chamber. In some embodiments, a method for recovering unreacted reagent may include providing reagent from a reagent source to a process chamber; exposing a substrate disposed in the process chamber to the reagent, forming an effluent; exhausting the effluent from the process chamber; and recovering unreacted reagent from the effluent in a reagent recovery system.
Abstract:
A load-absorbing device for initiating load forces such as cable forces or tensioning forces of sheet-like structures into supporting structures (10), with at least one bearing element (24, 80) which is anchored on the respective supporting structure (10) and to which a tie rod (40) of a load-absorbing part (36, 40) is connected, and with a connection device (50) for tension members (16; 98) which cooperates with the tie bar (40), is characterized in that the connection device (50) has at least one connection wing (66) which projects laterally from the longitudinal axis (A) and which forms at least one connection point (69a) offset with respect to the longitudinal axis (A).
Abstract:
A disc component of a clutch assembly includes, but is not limited to, one or more mounting structures. One of the mounting structures opens in a longitudinal direction of the disc component. The mounting structure is configured to receive a pre-mounted fastener on a second disc component of the clutch assembly from the longitudinal direction. The pre-mounted fastener is configured to fasten the disc component to the second component of from a lateral side of the disc component.
Abstract:
Described is a method for controlling a transmission for motor vehicles, especially an automatic transmission or an automatic gearbox, where a gear ratio (“1”, “2”, “3”, “4”, “5”, “6”) is adjusted according to operating conditions by means of pre-determined shifting programs (“0”, “Eco”, “Normal”, “Sport”, “Mountain II”, “Warm-up”, “Tip”) and corresponding specific shifting values (HS45, RS43) and where in relation to a vehicle's actual operating condition at least one special function (“Curve Recognition KE”, “Rapid Drive Pedal Release FO”, “Spontaneous Delay Vehicle SVF”, “Drive Speed Control FGR”, “Drive Dynamic control ESP”) is activated, which prevents the change from an actual gear ratio to a target gear ratio requested by a shifting program within a pre-determined operating range of a vehicle. In a first version of the method, the operating range, wherein a gear ratio change of the transmission is prevented, is changed in relation to applied specific values that depend on the operating condition. In a second version of the method it is planned that the shifting characteristics are changed in relation to applied specific values that depend on the operating condition in such a manner that the operating points of the vehicle that are defined on the side of the shift characteristics, for which gear ratio changes must be performed, are adjusted to the actual operating condition of the vehicle.
Abstract:
Described is a method for controlling a transmission for motor vehicles, especially an automatic transmission or an automatic gearbox, where a gear ratio (“1”, “2”, “3”, “4”, “5”, “6”) is adjusted according to operating conditions by means of pre-determined shifting programs (“0”, “Eco”, “Normal”, “Sport”, “Mountain II”, “Warm-up”, “Tip”) and corresponding specific shifting values (HS45, RS43) and where in relation to a vehicle's actual operating condition at least one special function (“Curve Recognition KE”, “Rapid Drive Pedal Release FO”, “Spontaneous Delay Vehicle SVF”, “Drive Speed Control FGR”, “Drive Dynamic control ESP”) is activated, which prevents the change from an actual gear ratio to a target gear ratio requested by a shifting program within a pre-determined operating range of a vehicle. In a first version of the method, the operating range, wherein a gear ratio change of the transmission is prevented, is changed in relation to applied specific values that depend on the operating condition. In a second version of the method it is planned that the shifting characteristics are changed in relation to applied specific values that depend on the operating condition in such a manner that the operating points of the vehicle that are defined on the side of the shift characteristics, for which gear ratio changes must be performed, are adjusted to the actual operating condition of the vehicle.
Abstract:
The present invention provides polynucleotide sequences (bbp) encoding a Bak Binding Protein (BBP) and fragments thereof that bind to Bak. The invention also provides a BBP which binds to Bak. The invention also provides recombinant host cells containing polynucleotides encoding BBP. The invention further provides antibodies that specifically bind to BBP. The invention further provides methods for detecting agents such as drugs that alter the binding of a BBP with a Bak protein. The invention further provides methods for detecting the presence of bbp or BBP in a biological sample, and further provides methods for modulating the levels of BBP in a cell. This invention additionally encompasses novel peptides, designated the “BBP Binding Domains” and the respective nucleotides, designated “bbpbd-1” and “bbpbd-2” which are involved in the interaction between Bak and BBP.
Abstract:
A shift device for an automatic transmission of a vehicle, particularly of a motor vehicle, is proposed in which the request to change the current ratio of the automatic transmission upon reaching preset operating states of the vehicle can be automatically generated or by manual input in a manual shifting mode. A pulse counter is here provided by way of successive pulses and manual input can be functionally interlinked wherein a shift signal can be generated depending on the linkage.