Abstract:
As in a conventional technology, a hard clipping process and a filtering process are performed on a transmission signal. An original transmission signal is subtracted from a signal on which the processes have been performed, and an inverse sign signal to the suppressed signal is retrieved. By giving a gain to the signal, and adding up to the original transmission signal, a peak voltage is suppressed. The gain can be a ratio of a difference signal between a hard clipped signal and an original transmission signal to a signal of suppression of a filtered signal from the original transmission signal, or a value determined by a simulation depending on the cutoff frequency of a low pass filter used in the filtering process.
Abstract:
A disclosed quadrature modulation system inputs an inphase signal component and an orthogonal signal component, and outputs an output signal that is quadrature modulated by a quadrature modulator. The quadrature modulation system calculates a first cumulative total based on the inphase signal component input into the quadrature modulator and an inphase signal component of a feedback signal obtained from the output signal. The quadrature modulation system calculates a second cumulative total based on the orthogonal signal component input into the quadrature modulator and an orthogonal signal component of the feedback signal. Based on the first and the second cumulative totals, a time difference between the inphase signal component and the orthogonal signal component is determined. The inphase signal component and the orthogonal signal component to be provided to the quadrature modulator are adjusted based on the time difference such that the time difference is compensated for.
Abstract:
Disclosed is a phase calibration method for inserting a calibration signal (SC) into main signals (SM1 to SMn) of a plurality of branches in turn, estimating the phase characteristic of an analog circuit to which a respective one of the main signals is input and calibrating the phase of each main signal. The method includes steps of outputting a first combined signal obtained by combining output signals from the analog circuits (62a to 62n) in all branches, outputting a second combined signal obtained by combining the main signals in all branches, extracting the calibration signal by removing the second combined signal from the first combined signal in a calibration signal extracting unit (64), estimating the phase characteristics of the analog circuits, to which the main signals having the inserted calibration signal are input, based upon a change in phase of the calibration signal, and subjecting the main signals to phase adjustment having characteristics that are opposite the phase characteristics.
Abstract:
A distortion compensation apparatus of the present invention is used in a transmitter that produces and outputs a second signal from a first signal. This apparatus comprises a delay unit for delaying a feedback signal obtained from by the second signal; and a delay control unit for determining a delay quantity of said delay means so that a timing difference between a reference signal obtained from the first signal and the feedback signal delayed by the delay unit is made small. The delay control unit limits the delay quantity within a predetermined limit value.
Abstract:
In a distortion compensating apparatus for adaptively compensating a non-linear distortion of a circuit having the non-linear distortion, an adaptive equalizing processor adaptively selects, from among a filter coefficient group preliminarily held in a memory, a filter coefficient which makes an out-of-band power of an output signal reduced to be set in a digital filter.
Abstract:
A delay amount estimating apparatus includes a delay value search section that searches for a first delay value smaller than a delay setting value at which a given correlation value between an input signal and a feedback signal is provided, and also for a second delay value greater than the delay setting value, the feedback signal coming from a signal processing apparatus that applies signal processing on the input signal, wherein respective correlation values of the first delay value and the second delay value satisfy a given condition; and a delay estimating section that estimates a delay amount of the feedback signal relative to the input signal based on the first delay value and the second delay value.
Abstract:
A transmission apparatus includes an analog digital converter that performs sampling on a demodulated signal obtained by demodulating a part of an output signal, which is produced by amplifying a modulated signal of a baseband signal including a plurality of signals having frequencies separated from each other, at a sampling frequency lower than a frequency of a given intermodulation distortion component and converting the demodulated signal into a digital signal, a detection section that detects an aliasing component of the given intermodulation distortion component produced by the conversion of the analog digital converter, and a distortion compensation section that compensates an input signal to be modulated for the given intermodulation distortion component in accordance with the detected aliasing component.
Abstract:
A distortion compensation device includes a distortion compensation unit which compensates for a distortion generated in a power amplifier by using a polynomial in which a signal to be input into a power amplifier is raised to a power of a degree N (N is an integer larger than 0) and the raised signal is delayed by a delay number K (K is an integer larger than 0), and a polynomial adjusting unit which adjusts the degree N or the delay number K of the polynomial based on a comparison between a prescribed value, which indicates a degree of variation of the distortion generated in the power amplifier and a threshold value.
Abstract:
A wireless apparatus includes: an A/D converter which samples an in-phase signal component and a quadrature signal component from a quadrature-modulated signal of analog form alternately; a digital quadrature demodulation unit which applies digital quadrature demodulation to an output signal of the A/D converter and outputs an in-phase signal and a quadrature signal; and an error detection unit which, based on the in-phase and quadrature signals output from the digital quadrature demodulation unit, detects a time difference error between the sample timing of the in-phase signal component and the sample timing of the quadrature signal component.
Abstract:
A power amplifier amplifies a signal. An error signal calculating unit calculates an error signal in accordance with an input signal and an output from the power amplifier. A distortion compensation unit performs predistortion on the input signal by using distortion compensation coefficients that are generated in accordance with a plurality of delay signals obtained by giving different amounts of delay to the input signal and by using an error signal and outputs the input signal subjected to the predistortion to the signal amplifying unit. A tap interval control unit controls the delay intervals of the delay signals that are used for the predistortion performed by the distortion compensation unit in accordance with signal correlation information calculated from the input signal.