摘要:
An intraocular lens, and a system and method of providing an intraocular lens, having at least one characteristic of the intraocular lens customized in accordance with a modified regression that includes a modification for corneal spherical aberration. The lens, system and method may indicate measuring at least one biometric parameter of an eye at a desired light level, determining a desired postoperative condition of the eye, obtaining a corneal spherical aberration of the eye, applying at least one empirically derived regression calculation, and predictively estimating, in accordance with an output of the at least one empirically derived regression calculation, the at least one characteristic of the intraocular lens to obtain the desired postoperative condition. The empirically derived regression calculation includes at least a product of the corneal spherical aberration with an empirically derived corneal spherical aberration constant, and a mathematical indication of the at least one biometric parameter or one of the paraxial regression formulas commonly used in clinical practice to calculate IOL power in normal patients.
摘要:
The present invention discloses methods of obtaining ophthalmic lens capable of reducing the aberrations of the eye comprising the steps of characterizing at least one corneal surface as a mathematical model, calculating the resulting aberrations of said corneal surface(s) by employing said mathematical model, selecting the optical power of the intraocular lens. From this information, an ophthalmic lens is modeled so a wavefront arriving from an optical system comprising said lens and corneal model obtains reduced aberrations in the eye. Also disclosed are ophthalmic lenses as obtained by the methods which are capable reducing aberrations of the eye.
摘要:
The invention relates to a system and method for measuring light diffusion in the eyeball or eye region, by recording and processing retinal images. The inventive system includes a double-pass ophthalmoscopic system having means for correcting low-order aberrations. Said system can be used to record images of the plane of the retina on a CCD camera, the outer part of said images containing information relating to ocular scattering. The aforementioned images can be used to obtain the objective scattering index (OSI), providing the ratio between the energy on the outer part of the image and the energy in the central part, or, alternatively, the modulation transfer function (MTF) area can be used for this purpose once the low frequencies have been filtered. According to the inventive method, the low-order aberrations are corrected before a retinal image or a temporal sequence of retinal images is captured and recorded.
摘要:
The present invention discloses methods of obtaining ophthalmic lens capable of reducing the aberrations of the eye comprising the steps of characterizing at least one corneal surface as a mathematical model, calculating the resulting aberrations of said corneal surface(s) by employing said mathematical model, selecting the optical power of the intraocular lens. From this information, an ophthalmic lens is modeled so a wavefront arriving from an optical system comprising said lens and corneal model obtains reduced aberrations in the eye. Also disclosed are ophthalmic lenses as obtained by the methods which are capable reducing aberrations of the eye.
摘要:
A wavefront aberration of an eye is determined, e.g., in real time. The eye is illuminated, and the light reflected from the retina is converted into spots with a device such as a Hartmann-Shack detector. The displacement of each spot from where it would be in the absence of aberration allows calculation of the aberration. Each spot is located by an iterative technique in which a corresponding centroid is located in a box drawn on the image data, a smaller box is defined around the centroid, the centroid is located in the smaller box, and so on. The wavefront aberration is calculated from the centroid locations by using a matrix in which unusable data can be eliminated simply by eliminating rows of the matrix. Aberrations for different pupil sizes are handled in data taken for a single pupil size by renormalization.