Abstract:
The present invention relates to a system and methodology facilitating material-driven processing in an industrial controller environment. Various models supported by database objects are provided to automatically and dynamically map inventory systems/processes to control systems/process such as in batch or recipe operations. A material model is provided that tracks to an inventory database and includes such aspects as defining material types and containers to house such materials. An area model maps the material model to possible units and equipment modules to process the materials. These models include phased-based parameters that define amounts of material that flow into and out of a determined area for processing the materials. Before, during and/or after automated manufacturing operations, object binding operations occur between material-based servers associated with an inventory system and batch servers associated with a process-control system. Such binding includes Just-In-Time or on-demand binding at run time, and relates material requirements of a recipe (or batch) to the units and equipment that are available to produce the recipe.
Abstract:
In a distributed directory configuration, different nodes can retain information pertinent an industrial control configuration. As information changes in one node, replicas of the information in other nodes can be updated. However, updating can take time and a query can be run upon the directory while nodes have conflicting information. Conflicting information can be identified and resolved such that a query obtains a correct answer.
Abstract:
An industrial control configuration can be a dynamic entity where different controllers are added, are subtracted, fail, etc. When dynamic functions occur, bindings of the configuration can benefit from a modification. Therefore, automatic adjustment of bindings can occur to facilitate improved operation. Automatic adjustment can be practiced when the industrial control configuration is a distributed control configuration without reliance upon a central database.
Abstract:
According to various embodiments, an interdependency modeling method for controlling a batch process with an industrial automation system includes evaluating an input parameter expression residing in a level of a supervisory system of the industrial automation system to determine a value, transferring the value of the input parameter expression to a level of an equipment control system of the industrial automation system, transferring data from the level of the equipment control system to the level of the supervisory system, and evaluating an output parameter expression residing in the level of the supervisory system based on the data from the level of the equipment control system.
Abstract:
Systems and methods that facilitate messaging capabilities within a plant (e.g., a unified plant model—UPM) via employing a message engine that normalizes messaging of various messaging protocols and formats, wherein various systems of such plant can map to the message engine; and provide a consistent interface where events are sent/received consistently across such system. Such messaging engines can facilitate communication (e.g., via preferred channels) to other services/products, wherein the configuration and management of messaging is consistent across the system.
Abstract:
A requesting entity can submit a query to an industrial control configuration to determine a location for a module. A distributed directory can be employed to discover an absolute location of the module, which can be provided to the requesting entity. This discovery can occur in real-time such that an answer can be given with a relatively high degree of certainty. In addition to providing the absolute address in the answer, a path on how to reach the module can be provided. The path can be optimized in order to allow quicker response time and to manage system resources.
Abstract:
A process controller a procedure module that includes instructions for executing a procedure, and a plurality of supplemental procedure modules, each of which includes instructions for executing one of a plurality of supplemental procedures. The process controller also includes a process monitor processor configured to receive an input electronic signal indicative of a status of a process feature, apply logic based on the input electronic signal, and generate an output electronic signal in response to the input electronic signal. The process controller also includes a sequence engine processor configured to execute the procedure, receive the output electronic signal, apply logic based on the output electronic signal, select one or more of the plurality of supplemental procedures based on the received output electronic signal, and execute the selected one or more of the plurality of supplemental procedures.
Abstract:
An industrial control configuration can be a dynamic entity where different controllers are added, are subtracted, fail, etc. When dynamic functions occur, bindings of the configuration can benefit from a modification. Therefore, automatic adjustment of bindings can occur to facilitate improved operation. Automatic adjustment can be practiced when the industrial control configuration is a distributed control configuration without reliance upon a central database.
Abstract:
A dynamic selection component for an industrial automation system is provided. The system includes one or more abstraction layers that are executed by a controller, the abstraction layers specify higher level requirements of a process. At least one execution layer is provided that is responsive to the abstraction layers, where the execution layer includes one or more process components that are dynamically selectable at runtime in view of the higher level requirements of the process.
Abstract:
According to various embodiments, an interdependency modeling method for controlling a batch process with an industrial automation system includes evaluating an input parameter expression residing in a level of a supervisory system of the industrial automation system to determine a value, transferring the value of the input parameter expression to a level of an equipment control system of the industrial automation system, transferring data from the level of the equipment control system to the level of the supervisory system, and evaluating an output parameter expression residing in the level of the supervisory system based on the data from the level of the equipment control system.