Abstract:
An invention relating to an eFuse bar code structure and a method of using the bar code structure is disclosed. The bar code structure includes a substrate and a plurality of eFuse elements disposed on the substrate and arranged in a form of an array, such that a bar pattern can be formed by the result of whether the fuse of the eFuse elements is blown or not. The method of using the bar code structure includes, with respect to a data, fuses of the eFuse elements in the bar code structure being correspondingly blown in accordance with an encoding method to form a bar pattern. The eFuse bar code structure according to the present invention can be manufactured by using a semiconductor manufacturing process, and thus it has small volume, a high density and may record a huge number of data.
Abstract:
A pixel structure suitable for being controlled by a scan line and a data line disposed on a thin film transistor (TFT) array substrate of a multi-domain vertical alignment (MVA) liquid crystal display is disclosed. The pixel structure includes a first TFT, a second TFT, a first pixel electrode, a second pixel electrode and a plurality of alignment members, wherein the first TFT and the second TFT are both electrically connected to the scan line and the data line. The first TFT has a first drain and the first pixel electrode is electrically connected to the first drain. The second TFT has a second drain and the second pixel electrode is floated over the second drain to form a coupling capacitor, while a voltage difference is established between the second pixel electrode and the first pixel electrode. The alignment members are disposed on the first and the second pixel electrode.
Abstract:
A chip package structure including a substrate, a first chip and a second chip is provided. The first contacts and the second contacts of the substrate are respectively arranged to reside on a first side region and a second side region of the substrate. The first chip disposed on the substrate and has a plurality of first bonding pads arranged to reside on a first wire-bonding region of the first chip adjacent to the first contacts and are electrically connected to the first contacts via a plurality of first wires. The second chip is disposed on the first chip away from the symmetrical center of the first chip. The second chip has a plurality of second bonding pads arranged to reside on a second wire-bonding region of the second chip adjacent to the second contacts and are electrically connected to the second contacts via a plurality of second wires.
Abstract:
A method of manufacturing a trench MOSFET with high cell density is disclosed. The method introduces a sidewall oxide spacer for narrowing the opening of the trench structure, thereby decreasing the cell pitch of the memory units. Moreover, the source structure is formed automatically by means of an extra contact silicon etch for preventing the photoresist from lifting during the ion implantation of the prior art. On the other hand, the contact structure is filled with W-plug for overcoming the defect of poor metal step coverage resulted from filling the contact structure with AlSiCu according to the prior art. Thus, the cell density of the device can be increased; and the Rds-on and the power loss of the device can be decreased.
Abstract:
A method, system and computer program and method for delivering a streaming data to a remote device from a wireless transmitter. In one embodiment, a transmitter is configured to send units of the streaming data to the remote device. A receiver is configured to receive usage data about the streaming data from the remote device. An adjusting module is configured to automatically adjust a transmission strategy of unsent units of the streaming data based, at least in part, on the usage data as a function of time according to a transmission policy. The usage data may include at least location information about the remote device or time of day information at the remote device. A user interface at the remote device may be configured to adjust the predefined transmission policy.
Abstract:
A multi-layer crack stop structure is described, disposed entirely in a die, entirely in a scribe line region outside the die, or partially in the die and partially in the scribe line region. The multi-layer crack stop structure is formed by stacking multiple layers of hollow crack stop units. The multi-layer crack stop structure can effectively prevent some damages like chipping, delamination or peeling-off from occurring to the active circuit region when the wafer is being sawn or when the die is subject to thermal cycles for testing, so that a better die can be obtained and the reliability of the packaged die can be significantly improved.
Abstract:
The present invention provides a method for combining a fluid delivery system with an analysis system for performing immunological or other chemical of biological assays. The method comprises a miniature plastic fluidic cartridge containing a reaction chamber with a plurality of immobilized species, a capillary channel, and a pump structure along with an external linear actuator corresponding to the pump structure to provide force for the fluid delivery. The plastic fluidic cartridge can be configured in a variety of ways to affect the performance and complexity of the assay performed.
Abstract:
A DMOS device having a trench bus structure thereof is introduced. The trench bus structure comprises a field oxide layer formed on a P substrate, and a trench extending from an top surface of the field oxide layer down to a lower portion of the P substrate. A gate oxide layer and a polysilicon bus are formed to fill the trench as a main portion of the bus structure. In addition, an isolation layer and a metal line are formed atop the polysilicon bus and the field oxide layer. An opening is formed in the isolation layer to form connections between the polysilicon bus and the metal line. In specific embodiments, the bus trench and the gate trenches of the DMOS device are formed simultaneously, and the polysilicon bus and the gate electrode are formed simultaneously as well. Therefore, the bus structure is able to form the DMOS transistor without demanding any lithographic step for defining the position of the polysilicon bus.
Abstract:
Techniques for adaptive QoS include selecting, based on one or more QoS criteria corresponding to a client, one or more given data items suitable for sending to the client in response to a query from the client. The one or more given data items are selected from a set of data items. One or more statistics are associated with the one or more data items. The one or more statistics are useable to modify which data items are included in the set of data items. The statistics may be used by removing unpopular data items, as determined by the statistics, from the set of data items in the communication system. Additionally, data items exceeding the one or more QoS criteria can be transcoded to create new data items meeting the one or more QoS criteria, and the new data items can be added to the set of data items in the communication system. Thus, the set of data items can be changed depending on current demand by users for particular data items.
Abstract:
Embodiments of the invention provide a termination structure of DMOS device and a method of forming the same. In forming the termination structure, a silicon substrate with an epitaxial layer formed thereon is provided. A body region defined by doping the epitaxial layer is then selectively etched to form a plurality of DMOS trenches therein. Thereafter, a gate oxide layer is formed over exposed surfaces in the body region and a termination oxide layer is formed to encircle the body region. Afterward, a polysilicon layer is deposited over all the exposed surfaces, and then selectively etched to form a plurality of poly gates in the DMOS trenches and a polysilicon plate having an extending portion toward the body region over the termination oxide layer. By using the termination polysilicon layer as an implantation mask, sources are formed in the body region. Afterward, an isolation layer and a source metal contact layer are deposited over the structure, in which the isolation layer is utilized to protect the polysilicon gates, and also the source metal contact layer is utilized to ground both the body region and the polysilicon plate.