Abstract:
Color conversion films for a LCD (liquid crystal display) having RGB (red, green, blue) color filters, as well as such displays, formulations, precursors and methods are provided, which improve display performances with respect to color gamut, energy efficiency, materials and costs. The color conversion films absorb backlight illumination and convert the energy to green and/or red emission at high efficiency, specified wavelength ranges and narrow emission peaks. Film integration and display configurations further enhance the display performance with color conversion films utilizing various color conversion elements and possibly patterned and/or integrated with a crosstalk blocking matrix. For example, color conversion and/or assistant dyes may be used to enhance spectral regions transmitted through the color filters and shape the illumination spectrum, to improve efficiency and performance.
Abstract:
This invention is directed to photoluminescent compounds based on rhodamine dyes with green or red emission and uses thereof for photoluminescence based devices.
Abstract:
Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
Abstract:
Improved anodes and cells are provided, which enable fast charging rates with enhanced safety due to much reduced probability of metallization of lithium on the anode, preventing dendrite growth and related risks of fire or explosion. Anodes and/or electrolytes have buffering zones for partly reducing and gradually introducing lithium ions into the anode for lithiation, to prevent lithium ion accumulation at the anode electrolyte interface and consequent metallization and dendrite growth. Various anode active materials and combinations, modifications through nanoparticles and a range of coatings which implement the improved anodes are provided.
Abstract:
Color conversion films for a LCD (liquid crystal display) having RGB (red, green, blue) color filters, as well as such displays, formulations, precursors and methods are provided, which improve display performances with respect to color gamut, energy efficiency, materials and costs. The color conversion films absorb backlight illumination and convert the energy to green and/or red emission at high efficiency, specified wavelength ranges and narrow emission peaks. For example, rhodamine-based fluorescent compounds are used in matrices produced by sol gel processes and/or UV (ultraviolet) curing processes which are configured to stabilize the compounds and extend their lifetime - to provide the required emission specifications of the color conversion films. Film integration and display configurations further enhance the display performance with color conversion films utilizing various color conversion elements.
Abstract:
The present invention discloses systems and methods for adaptive fast-charging for mobile devices and devices having sporadic power-source connection. Methods include the steps of: firstly determining whether a supercapacitor of a device is charged; upon detecting the supercapacitor is charged, secondly determining whether a battery of the device is charged; and upon detecting the battery is not charged, firstly charging the battery from the supercapacitor. Preferably, the step of firstly determining includes whether the supercapacitor is partially charged, and the step of secondly determining includes whether the battery is partially charged. Preferably, the step of firstly charging is adaptively regulated to perform a task selected from the group consisting of: preserving a lifetime of the battery by controlling a current to the battery, and discharging the supercapacitor in order to charge the battery. Preferably, the discharging enables the supercapacitor to be subsequently recharged.
Abstract:
An electrochemical cell that includes (i) a cathode tabs electrical coupler; (ii) an anode tabs electrical coupler; and (iii) a stack that is rolled about an axis, wherein the stack includes multiple instances of: (a) a cathode sheet; (b) a cathode tab that extends from the cathode sheet at a first direction; (c) an anode sheet, (e) an anode tab that extends from the anode sheet at a second direction, the second direction differs from the first direction; and (f) one or more separator sheets. Multiple cathode tabs of the multiple instances are coupled in parallel to each other by the cathode tabs electrical coupler. Multiple anode tabs of the multiple instances are coupled in parallel to each other by the anode tabs electrical coupler.
Abstract:
Rechargeable battery cells and methods for extreme fast charging are disclosed. For example, such a rechargeable battery cell might be chargeable to at least 70% of usable capacity within 15 minutes. Such a rechargeable battery cell may include an anode having a conductive current collector coated with a composite containing at least 30% Si by weight, a cathode configured as a source of Li ions, an electrolyte capable of carrying Li-ions between the anode and the cathode, and a separator between the anode and the cathode, the separator having a porosity of at least 38%. Methods of charging such rechargeable battery cells are also disclosed.
Abstract:
Rechargeable battery cells and methods for extreme fast charging are disclosed. For example, such a rechargeable battery cell might be chargeable to at least 70% of usable capacity within 15 minutes. Such a rechargeable battery cell may include an anode having at least one surface with a reversible areal capacity, after formation, up to 8.0 mAh/cm2, and a cathode having at least one surface with a reversible areal capacity, after formation, up to 6 mAh/cm2, wherein a ratio of areal capacity of the at least one surface of the anode to the at least one surface of the cathode is between 1.15 to 1.45. Methods of charging rechargeable battery cells disclosed herein under conditions sufficient to enable charging of at least 70% of usable capacity to the rechargeable battery cell within 15 minutes, are also disclosed.
Abstract:
Electrodes, production methods and mono-cell batteries are provided, which comprise active material particles embedded in electrically conductive metallic porous structure, dry-etched anode structures and battery structures with thick anodes and cathodes that have spatially uniform resistance. The metallic porous structure provides electric conductivity, a large volume that supports good ionic conductivity, that in turn reduces directional elongation of the particles during operation, and may enable reduction or removal of binders, conductive additives and/or current collectors to yield electrodes with higher structural stability, lower resistance, possibly higher energy density and longer cycling lifetime. Dry etching treatments may be used to reduce oxidized surfaces of the active material particles, thereby simplifying production methods and enhancing porosity and ionic conductivity of the electrodes. Electrodes may be made thick and used to form mono-cell batteries which are simple to produce and yield high performance.