Abstract:
The present invention relates to methods and kits for expanding a stem cell population. More particularly, the invention relates, inter alia, to methods, kits, and compositions for expanding a stem cell population, particularly a hematopoietic stem cell population.
Abstract:
The present invention relates to methods and kits for expanding a stem cell population. More particularly, the invention relates, inter alia, to methods, kits, and compositions for expanding a stem cell population, particularly a hematopoietic stem cell population.
Abstract:
The present invention relates to methods and compositions for the prevention and treatment of renal damage. The invention provides protein-based renal therapeutic agents for administration to subjects in order to prevent or treat renal degeneration or damage.
Abstract:
The present invention relates to nucleic acid sequences and amino acid sequences which influence bone deposition, the Wnt pathway, ocular development, tooth development, and may bind to LRP. The nucleic acid sequence and polypeptides include Wise and Sost as well as a family of molecules which express a cysteine knot polypeptide. Additionally, the present invention relates to various molecular tools derived from the nucleic acids and polypeptides including vectors, transfected host cells, monochronal antibodies, Fab fragments, and methods for impacting the pathways.
Abstract:
This disclosure relates to the use of “pseudo-images” to perform image recognition, e.g., to perform facial image recognition. In an embodiment, the pseudo-image is obtained by starting with a real world image and, after optional preprocessing, subjecting the image to a non-linear transformation that converts the image into a pseudo-image. While real world objects (or, more generally, real world patterns) may be perceivable in the starting image, they cannot be perceived in the pseudo-image. Image recognition takes place by comparing the pseudo-image with a library of known pseudo-images, i.e., image recognition takes place in pseudo-image space without a return to real world space. In this way, robust image recognition is achieved even for imperfect real world images, such as, real world images that have been degraded by noise, poor illumination, uneven lighting, and/or occlusion, e.g., the presence of glasses, scarves, or the like in the case of facial images.
Abstract:
This disclosure relates to the use of “pseudo-images” to perform image recognition, e.g., to perform facial image recognition. In an embodiment, the pseudo-image is obtained by starting with a real world image and, after optional preprocessing, subjecting the image to a non-linear transformation that converts the image into a pseudo-image. While real world objects (or, more generally, real world patterns) may be perceivable in the starting image, they cannot be perceived in the pseudo-image. Image recognition takes place by comparing the pseudo-image with a library of known pseudo-images, i.e., image recognition takes place in pseudo-image space without a return to real world space. In this way, robust image recognition is achieved even for imperfect real world images, such as, real world images that have been degraded by noise, poor illumination, uneven lighting, and/or occlusion, e.g., the presence of glasses, scarves, or the like in the case of facial images.
Abstract:
This disclosure relates to the use of “pseudo-images” to perform image recognition, e.g., to perform facial image recognition. In an embodiment, the pseudo-image is obtained by starting with a real world image and, after optional preprocessing, subjecting the image to a non-linear transformation that converts the image into a pseudo-image. While real world objects (or, more generally, real world patterns) may be perceivable in the starting image, they cannot be perceived in the pseudo-image. Image recognition takes place by comparing the pseudo-image with a library of known pseudo-images, i.e., image recognition takes place in pseudo-image space without a return to real world space. In this way, robust image recognition is achieved even for imperfect real world images, such as, real world images that have been degraded by noise, poor illumination, uneven lighting, and/or occlusion, e.g., the presence of glasses, scarves, or the like in the case of facial images.
Abstract:
The present invention provides, inter alia, methods and kits for identifying where a polypeptide of interest binds in a genome. The methods include a) carrying out a chromatin immunoprecipitation coupled to exonuclease digestion (ChIP-exo) process with an antibody against the polypeptide of interest; (b) extracting a polynucleotide fragment to which the polypeptide of interest binds; (c) carrying out a library preparation protocol adapted from an individual nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) process on the ChIP-exo processed polynucleotide fragment; and (d) sequencing the resulting polynucleotides. The kits include: (a) reagents sufficient to carry out ChIP-exo; (b) reagents sufficient to carry out the library preparation protocol adapted from the iCLIP process; and (c) instructions for use.
Abstract:
The present invention is directed to isolated polypeptides and antibodies suitable for producing therapeutic preparations, methods, and kits relating to bone deposition. One objective of the present invention is to provide compositions that improve bone deposition. Yet another objective of the present invention is to provide methods and compositions to be utilized in diagnosing bone dysregulation. The therapeutic compositions and methods of the present invention are related to the regulation of Wise, Sost, and closely related sequences. In particular, the nucleic acid sequences and polypeptides include Wise and Sost as well as a family of molecules that express a cysteine knot polypeptide.
Abstract:
The present invention provides compositions, combinations, methods, sequences and kits for use of novel fluorescent proteins derived from the genus Branchiostoma. Specifically, polynucleotide and polypeptide sequences encoding fluorescent proteins isolated from Branchiostoma floridae, including harmonized sequences, which permit enhanced expression of the encoded polypeptides in mammalian cells in vivo are provided.