Abstract:
Integrated circuit memory devices include first and second memory cell arrays, first and second transmission parts between the first and second memory cell arrays, and first and second input/output selection parts between the first and second memory cell arrays, wherein the first transmission part is adjacent the first input/output selection part and wherein the second transmission part is adjacent the second input/output selection part. A transistor in the first transmission part and a transistor in the first input/output selection part can share a first common source/drain region. A transistor in the second transmission part and a transistor in the second input/output selection part also can share a second common source/drain region. First and second input/output selection parts also may be provided between the first and second transmission parts. At least one sense amplifier part may be provided between the first and second input/output selection parts.
Abstract:
Multi-bank integrated circuit memory devices include first and second memory cell arrays having first and second pairs of differential bit lines electrically coupled thereto, respectively. A dual sense amplifier is also provided and this sense amplifier is electrically coupled together by a first pair of differential input/output lines. First and second isolation circuits are also provided. The first isolation circuit is electrically coupled to the first pair of differential bit lines and is responsive to a first control signal (C1). The second isolation circuit is electrically coupled to the second pair of differential bit lines and is responsive to a second control signal (C2). First and second equalization circuits are provided. The first equalization circuit is responsive to the second control signal and performs the function of equalizing a potential of the first pair of differential bit lines. The second equalization circuit is responsive to the first control signal and performs the function of equalizing a potential of the second pair of differential bit lines. These first and second control signals are generated by a control signal generator, in response to a row address.
Abstract:
Disclosed are a dynamic random access memory (DRAM) device, an on-die termination (ODT) resistance value setting method thereof, and a computer program therefor, and the DRAM device includes at least one DRAM module and a memory controller configured to measure a resistance value of an ODT resistor corresponding to one of a rank included in the DRAM module, a chipset included in the rank, and a DQ included in the chipset and set a resistance value of an ODT resistor corresponding to one of the rank, the chipset, and the DQ on the basis of the measured resistance value.
Abstract:
The disclosure relates to a semiconductor memory device including a semiconductor memory module and a semiconductor memory control unit, and since the semiconductor memory module includes a power management unit, and the power management unit generates a reference voltage and various internal voltages to be supplied to a dynamic random access memory (DRAM) chip array, and receives the internal voltages supplied to the DRAM chip array by feedback to measure and compensate the internal voltages, a stable and accurate voltage can be supplied to the DRAM chip array.
Abstract:
A semiconductor memory device includes a memory core unit including a memory cell array including a plurality of memory cells and a sense amplifier to sense and amplify data of the plurality of memory cells, and a self refresh control unit to apply at least one first core voltage to the memory core unit and to control a self refresh operation to be performed at every first self refresh cycle, in a first self refresh mode, and to apply at least one second core voltage to the memory core unit and to control the self refresh operation to be performed at every second self refresh cycle, in a second self refresh mode. In the semiconductor memory, a level of the at least one first core voltage is higher than that of a corresponding one of the at least one second core voltage, and the first self refresh cycle is shorter than the second self refresh cycle.
Abstract:
Provided is a fuse circuit capable of selectively using a power supply voltage for a logic operation according to an operation mode. The fuse circuit includes a mode generating circuit, a power supply voltage selection circuit, and at least one fuse unit. The mode generating circuit generates a plurality of mode signals. The power supply voltage selection circuit selects one out of a plurality of power supply voltages in response to the plurality of mode signals and outputs the selected power supply voltage to a first node. Each of the fuse units is coupled between the first node and a ground voltage and uses the selected power supply voltage as a power supply voltage for a logic operation. Thus, a semiconductor device including the fuse circuit may accurately test a connection state of a fuse.
Abstract:
A semiconductor memory device is provided. The device includes an on die termination circuit controlling a termination resistance value by detecting a phase change of a signal inputted through a pad. Additionally, the on die termination circuit changes the termination resistance value when an identical phase signal is inputted during n (n is positive integer) periods of a clock signal.
Abstract:
Provided is a DRAM having reduced current consumption and a communication terminal including the same. The DRAM includes a plurality of memory banks capable of being independently supplied with power, and a DPD controller for selectively causing some of the plurality of memory banks to enter a DPD mode.
Abstract:
A semiconductor memory device and method thereof are provided. The example method may be directed to performing a memory operation in a semiconductor memory device, and may include receiving data and a data masking signal corresponding to at least a portion of the received data, the received data scheduled to be written into memory in response to a write command and the data masking signal configured to block the at least a portion of the received data from being written into the memory and configuring timing parameters differently for each of the received data and the data masking signal so as to execute the write command without writing the at least a portion of the received data into the memory.
Abstract:
Provided is a DRAM having reduced current consumption and a communication terminal including the same. The DRAM includes a plurality of memory banks capable of being independently supplied with power, and a DPD controller for selectively causing some of the plurality of memory banks to enter a DPD mode.