Abstract:
A method for constraining lateral growth of gate caps formed during an epitaxial silicon growth process to achieve raised source/drain regions on poly silicon is presented. The method is appropriate for integration into a manufacturing process for integrated circuit semiconductor devices. The method utilizes selective etch processes, dependant upon the material comprising the protective layer (hard mask) over the gate and the material of the spacers, e.g., oxide mask/nitride spacers, or nitride mask/oxide spacers.
Abstract:
A CMOS circuit is provided that includes a PMOS transistor, an NMOS transistor adjacent the PMOS transistor in a channel width direction, a compressive stress liner overlying the PMOS transistor, and a tensile stress liner overlying the NMOS transistor. A portion of the compressive stress liner and a portion of the tensile stress liner are in a stacked configuration, and an overlap region of the compressive stress liner and the tensile stress liner is sufficient to result in an enhanced transverse stress in the compressive stress liner or the tensile stress liner.
Abstract:
A method is provided, the method including forming a gate dielectric above a surface of the substrate and forming a doped-poly gate structure above the gate dielectric, the doped-poly gate structure having an edge region. The method also includes forming a dopant-depleted-poly region in the cage region of the doped-poly gate structure adjacent the gate dielectric.
Abstract:
A system and method for providing a memory cell on a semiconductor is disclosed. In one aspect, the method and system include providing at least one gate stack on the semiconductor, depositing at least one spacer, and providing at least one source implant in the semiconductor. The at least one gate stack has an edge. A portion of the at least one spacer is disposed along the edge of the at least one gate stack. In another aspect, the method and system include providing at least one gate stack on the semiconductor, providing a first junction implant in the semiconductor, depositing at least one spacer, and providing a second junction implant in the semiconductor after the at least one spacer is deposited. The at least one gate stack has an edge. A portion of the at least one spacer is disposed at the edge of the at least one gate stack. In a third aspect, the method and system include providing at least one gate stack on the semiconductor, providing at least one source implant in the semiconductor, depositing at least one spacer after the at least one source implant is provided, and providing at least one drain implant in the semiconductor after the spacer is deposited. The at least one gate has an edge. A portion of the at least one spacer is disposed along the edge of the at least one gate.
Abstract:
A semiconductor device is disclosed having a conductive gate structure overlying a semiconductor layer having a major surface. An isolation material is recessed within a trench region below the major surface of the semiconductor layer. An epitaxial layer is formed overlying a portion of the major surface and on an active region forming a sidewall of the trench.
Abstract:
The present invention is generally directed to various methods of forming metal silicide regions on transistors based upon gate critical dimensions. In one illustrative embodiment, the method comprises forming a layer of refractory metal above a plurality of transistors, reducing a thickness of at least a portion of the layer of refractory metal above at least some of the transistors and performing at least one anneal process to form metal silicide regions above the transistors. In another illustrative embodiment, the method comprises forming a layer of refractory metal above the plurality of transistors, reducing the thickness of the layer of refractory metal above a first of the transistors having a gate electrode with a critical dimension that is less than a critical dimension of a gate electrode structure of another of the plurality of transistors, and performing at least one anneal process to form metal silicide regions on the plurality of transistors. In yet another illustrative embodiment, the method comprises forming a layer of refractory metal to an original thickness above a plurality of transistors, reducing the original thickness of a portion of the layer of refractory metal above at least some of the transistors to define a layer of refractory metal having multiple thicknesses, and performing at least one anneal process to convert portions of the layer of refractory metal having multiple thicknesses to metal silicide regions on the transistors.
Abstract:
The present invention is directed to a method of forming halo implants in a semiconductor device. In one illustrative embodiment, the method comprises forming a gate electrode above a surface of a semiconducting substrate, and forming a hard mask layer above the gate electrode and the substrate. The method further comprises patterning the hard mask layer to define an opening in the hard mask layer, and performing an angled implantation process through the opening in the hard mask to introduce dopant atoms into the substrate under at least a portion of the gate electrode.
Abstract:
The present invention is directed to a method of forming a semiconductor device. In one illustrative embodiment, the method comprises forming a layer of polysilicon, forming a masking layer above the layer of polysilicon, and patterning the masking layer to expose portions of the layer of polysilicon. The method further comprises implanting a dopant material into the exposed portions of the layer of polysilicon to convert the exposed portions of the layer of polysilicon to substantially amorphous silicon, and performing an etching process to remove the substantially amorphous silicon to define a gate electrode.
Abstract:
A system and method for providing a memory cell on a semiconductor is disclosed. The method and system include providing an oxide layer on the semiconductor and providing at least one gate stack disposed above the oxide layer. The at least one gate stack has a corner contacting the oxide layer. The method and system further include exposing at least the corner of the at least one gate stack and rounding at least the corner of the at least one gate stack.
Abstract:
A method is provided for forming a halo implant in a substrate adjacent one side of a structure, the method including forming the structure above a surface of the substrate, the structure having first and second edges and forming a mask defining a region adjacent the structure, the mask having a thickness &tgr; above the surface and having an edge disposed a distance &dgr; from the first edge of the structure. The method also includes implanting the halo implant at an angle &agr; with respect to a direction perpendicular to the surface, wherein the tangent of the angle &agr; is at least the ratio of the distance &dgr; to the thickness &tgr;.