Abstract:
Process control systems for operating process plants are disclosed herein. The process control systems include control modules that are decoupled from the I/O architecture of the process plants using signal objects or generic shadow blocks. This decoupling is effected by using the signal objects or generic shadow blocks to manage at least part of the communication between the control modules and the field devices. Signal objects may convert between protocols used by control modules and field devices, thus decoupling the control modules from the I/O architecture. Generic shadow blocks may be automatically configured to mimic the operation of field devices within a controller executing the control modules, thus partially decoupling the control modules from the I/O architecture by using the shadow blocks to manage communication between the control modules and the field devices.
Abstract:
An ankle fusion device has a proximal portion generally aligned with a first longitudinal axis. The proximal portion includes a proximal end and a first fastener hole. The proximal portion has an arcuate curve such that the proximal end is spaced a distance from the first longitudinal axis in a first direction. The first fastener hole is configured to receive a first fastener along a first fastener axis. A distal portion of the ankle fusion device extends to a distal end from the proximal portion along a second longitudinal axis. The second longitudinal axis is angled in second and third directions relative to the first longitudinal axis. The second direction is perpendicular to the first direction and the third direction being opposite the first direction. The distal portion includes a second fastener hole configured to receive a second fastener along a second fastener axis.
Abstract:
A common process control graphical user interface plant operators, plant maintenance personnel, and management is disclosed which provides a real-time interface to both the process and the plant. The common interface is modular in design and is capable of supporting various specializations for each user type. Operator consoles are dedicated to each section of the plant and include additional functions such as maintenance, configuration, simulation and supervisory information. The unified for common graphical interface replaces control room displays filled with single case analog controllers, meters, and digital indicators. The common interface addresses the functions that previously were provided by the panel motor start/stop buttons and status indications, chart recorders, annunciator panels and subsystem interfaces. From a console, operators manage alarms, adjust the process by entering new setpoints or other parameters, “zoom in” on particular portions of the process for details, and utilize other specialized applications to work with their batch, advanced control, or business applications. The interface will run in both dedicated and non-dedicated modes, will run as a rich client or as part of a browser style interface utilizing web services and will run on workstations, laptops, tablet PC's, handhelds, and smart phones.
Abstract:
An integrated graphical runtime interface that provides a secure, highly available environment for process control systems is disclosed. In one example, a method for displaying process control information via a graphical user interface instantiates a runtime workspace application to operatively interpose between an operator station operating system and a user. The example method displays a plurality of panels via the graphical user interface and displays a portion of the process control information associated with a runtime application in at least one of the plurality of panels via the runtime workspace application.
Abstract:
Smart graphic elements are provided for use as portions or components of one or more graphic displays, which may be executed in a process plant to display information to users about the process plant environment, such as the current state of devices within the process plant. Each of the graphic elements is an executable object that includes a property or a variable that may be bound to an associated process entity, like a field device, and that includes multiple visualizations, each of which may be used to graphically depict the associated process entity on a user interface when the graphic element is executed as part of the graphic display. Any of the graphic element visualizations may be used in any particular graphic display and the same graphic display may use different ones of the visualizations at different times. The different visualizations associated with a graphic element make the graphic element more versatile, at they allow the same graphic element to be used in different displays using different graphical styles or norms. These visualizations also enable the same graphic element to be used in displays designed for different types of display devices, such as display devices having large display screens, standard computer screens and very small display screens, such as PDA and telephone display screens.
Abstract:
In one aspect, a data communication system includes a modulator, an integrated acoustic data coupler, and a demodulator. The modulator modulates a carrier signal having a frequency in an operating frequency range in response to an input data signal and provides the modulated carrier signal at a modulator output. The integrated acoustic data coupler includes an acoustically resonant structure that has one or more acoustic resonant frequencies in the operating frequency range. The acoustically resonant structure includes a first thin film electro-acoustic transducer electrically coupled to the modulator output, a second thin film electro-acoustic transducer, and a substrate. The substrate supports, acoustically couples, and provides an electrical isolation barrier between the first and second thin film electro-acoustic transducers. The demodulator has a demodulator input coupled to the second thin film electro-acoustic transducer and is operable to generate an output data signal from an input signal received at the demodulator input.
Abstract:
Methods, apparatus, and articles of manufacture for modifying process control data involve obtaining the process control data in an extensible markup language format, converting the process control data in the extensible markup language format to a second data format, and storing the process control data in a database. The process control data is subsequently edited by retrieving the process control data from the database, modifying the process control data, storing the modified process control data in the second data format in the database, converting the modified process control data from the second data format to the extensible markup language format, and storing the modified process control data in the extensible markup language format.
Abstract:
A configuration database includes multiple databases distributed at a plurality of physical locations within a process control system. Each of the databases may store a subset of the configuration data and this subset of configuration data may be accessed by users at any of the sites within the process control system. A database server having a shared cache accesses a database in a manner that enables multiple subscribers to read configuration data from the database with only a minimal number of reads to the database. To prevent the configuration data being viewed by subscribers within the process control system from becoming stale, the database server automatically detects changes to an item within the configuration database and sends notifications of changes made to the item to each of the subscribers of that item so that a user always views the state of the configuration as it actually exists within the configuration database.
Abstract:
A user interface system for a process plant includes a graphic display editor to configure a process graphic display having a graphic display element representative of a process plant element of the process plant. The process graphic display is specified via configuration information set forth in a declarative language. A graphics rendering engine generates a depiction of the process graphic display during runtime based on commands derived from the configuration information set forth in the declarative language. The configuration information for the process graphic display may be stored as an object, which, for instance, may include first and second portions to define a graphical parameter and identify a data source, respectively. The graphical parameter may be directed to defining a graphical depiction of the process plant element and, to this end, may be set forth in a formal in accordance with the declarative language. The data source may specify a location or path for data indicative of on-line operation of the process plant element to be displayed via the graphical depiction.