Abstract:
A first ECU 30 detects a steering torque applied to a steering system, estimates a self-aligning torque generated in a front wheel on the basis of the steering torque, and estimates a side force for the front wheel on the basis of lateral acceleration and a yaw rate. The first ECU 30 estimates a grip factor ε for the front wheel on the basis of a change of the self-aligning torque to the side force. The first ECU 30 judges whether the grip factor is below a second OS (oversteer) start threshold value. A second ECU 40 controls the transfer ratio according to the vehicle state when the grip factor is less than the second OS start threshold value.
Abstract:
In accordance with a vehicle motion control apparatus, a steering angle (θh) of a steering wheel is determined on the basis of a rotation angle (θpm) of an assist motor (24m) detected by a rotation angle sensor (24s) and a rotation angle (θvm) of a gear ratio variable motor (32m) detected by a rotation angle sensor (32s), and a VGRS control process (40a) of a gear ratio variable mechanism is executed on the basis of the determined steering angle (θh). Accordingly, since the steering angle (θh) of the steering wheel is determined on the basis of the rotation angle (θvm) used for the VGRS control process (40a) of the gear ratio variable mechanism and the rotation angle (θpm) used for an EPS control process (30a) of an EPS actuator, it is possible to obtain the steering angle (θh) of the steering wheel without a steering angle sensor. Therefore, it is possible to reduce the number of the parts of a vehicle motion control apparatus.
Abstract:
The vehicle operation control apparatus multiplies the variable gain G controlled based on the vehicle velocity V, the steering angle &thgr;h, the steering angle velocity &ohgr;h and the actual steering angle &thgr;T with the steering angle &thgr;h, and controls the actual steering angle &thgr;T of the driven wheels on a result of this multiplication. Consequently, the additional turning time gear ratio Ga1 or the turning-back gear ratio Ga2, set up individually, can be selected depending on the turning direction of the steering wheel. Therefore, the steering feeling both at the time of additional turning and turning-back can be improved.
Abstract:
The present invention relates to an antilock brake system having an electrically controlled hydrostatic motor and pump system. The inventive ABS improves stability and maneuverability during braking by reducing or eliminating vibration and noise problems due to conventional on/off solenoid valve control. In accordance with exemplary embodiments, a two position solenoid is actuated (i.e., energized) in response to initiation of an ABS control mode. Once activated, the solenoid remains energized for the duration of the ABS control mode. Because the solenoid remains continuously activated during the ABS control mode, the vibration and noise associated with repeatedly activating and deactivating a solenoid is reduced or eliminated. To effect pressure increases and decreases in a braking channel during the ABS control mode, a reversible (i.e., bi-directional) pump is provided in each braking channel. To further enhance the smoothness of the braking, the reversible pump is controlled with an analog command signal that is, for example, proportional to a difference between wheel deceleration/acceleration detected for the channel and a vehicle's deceleration/acceleration.
Abstract:
The steering stability of a moving vehicle is maintained by measuring an actual yaw rate of the vehicle and determining a desired yaw rate of the vehicle and producing an output signal in response to a comparison of the actual and desired yaw rates. The steering angle of steerable wheels of the vehicle is controlled in response to the output signal in a manner tending to substantially conform the actual yaw rate to the desired yaw rate, thereby maintaining vehicle stability. The steerable wheels are steered by a steering wheel, and are independently steered by a motor in response to the output signal. The motor comprises a fluid motor. Additionally, valves are provided to stop the flow of fluid in the event that a malfunction occurs.
Abstract:
A stability augmentation system and hydrostatic power steering system including an electric motor is provided for a automotive vehicle. The hydrostatic power steering system utilizes a power steering piston responsive to movement of the rack element of the rack and pinion steering connection. A torque sensor is connected to the steering shaft for providing an output torque signal to a power steering controller. The electric motor of the system is responsive to a command signal generated by the power steering controller. An electrically operated valve is connected to the hydraulic lines and is adapted to receive a signal from the power steering controller for controlling flow of hydraulic fluid to the power steering chamber. The electrically operated valve arrangement is rendered inoperative within a predetermined zone defined by the command signal and the output torque signal. The stability augmentation system includes a hydraulic system having a separate oil pump and electric motor. The motor is controlled by a stability augmentation system controller through inputs from a steering wheel angle sensor, vehicle speed sensor, yaw rate sensor and a position sensor.
Abstract:
An air spring assembly which includes a main air chamber and an interconnected auxiliary air chamber in which there is disposed a piston movable endwise thereof upon actuation of a reversible electric motor to increase or to decrease the volume of the auxiliary air chamber that is open to the main air chamber, thereby adjusting the effective volume of the main air chamber and thus its spring constant.
Abstract:
An electric motor is controlled based on a target energization amount calculated based on an operation amount of a braking operation member. Based on the operation amount, it is determined whether or not an inertia compensation control for compensating for the influence of the inertia of a brake actuator is necessary. When the inertia compensation control is determined to be necessary, an inertia compensation energization amount compensating for the influence of the inertia of the brake actuator is calculated using a time-series pattern set in advance based on the maximum response of the brake actuator. Using the inertia compensation energization amount, the target energization amount is calculated. The vehicle brake control device causes an electric motor to generate a braking torque and appropriately compensates for the influence of the inertia of the entire device including the inertia of the electric motor.
Abstract:
Based on a difference between target and actual values of a friction member force pressing a brake disc, feedback control over the pressing force is executed. As the actual value, a “limit pressing force (Fbs) obtained by placing a limitation on a temporal change amount of the Fba based on a limit value (Lmt)” is used. The limit value (Lmt) is set based on an electric motor speed (dMkt, dMka), a wheel speed (Vwa), and a temporal change amount (ΔTmp) of the friction member temperature. The Lmt is set to increase as the dMkt (dMka) increases and the temporal change amount (ΔTmp) of the temperature increases, and to also increase as the wheel speed (Vwa) decreases. Thus, even when a rotating member (brake disc) is deformed, braking torque control can be appropriately executed without accelerating a fluctuation of a braking torque on the wheel.
Abstract:
Electric motor control is based on a target energization amount calculated using a braking operation member operation amount. A state quantity is acquired as an actual value, indicating an actual actuation state of a movable member located in a power transmission path from the electric motor to a friction member. Using the operation amount, it is determined whether or not inertia compensation control is necessary, which compensates for the inertia influence of a brake actuator during electric motor deceleration. “A target value corresponding to the actual value” is determined as a reference value, which is calculated based on the operation amount at a time when inertia compensation control is necessary. Based on the actual and reference values, “an inertia compensation energization amount for decreasing the target energization amount to compensate for the influence of inertia” is calculated, and the target energization amount is adjusted using the inertia compensation energization amount.