Abstract:
A process for making inorganic, metal oxide spheres that includes exposing solidified, molded microparticles that include a glass precursor composition to a temperature sufficient to transform the molded microparticles into molten glass and cooling the molten glass to form inorganic, metal oxide spheres.
Abstract:
A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.
Abstract:
The present disclosure provides a thermally conductive article including a pad having first and second opposed major surfaces and a thickness therebetween. The thickness is formed of entangled thermally conductive fibers and at least a portion of the entangled thermally conductive fibers have at least one terminal end at the first opposed major surface, the opposed second major surface, or both. The pad is at least partially impregnated with a polymer. Another thermally conductive article is provided including a) a pad having first and second opposed major surfaces and a thickness therebetween; b) a first thermally conductive skin layer; and c) a second thermally conductive skin layer. The thickness of the pad is formed of aligned thermally conductive fibers, and at least a portion of the thermally conductive fibers have a terminal end at the first opposed major surface and the opposed second major surface. The first and second thermally conductive skin layers each include a polymeric matrix at least partially embedded in the terminal end of at least a portion of the thermally conductive fibers at the first and second major surfaces of the pad, respectively. Methods of making the thermally conductive articles are also provided.
Abstract:
A PTSM-coated expandable microsphere comprises a polymer shell enclosing an interior volume containing at least one blowing agent. The polymer shell has an outer surface with photothermal susceptor material disposed on at least a portion thereof. If heated to at least one temperature greater than 25° C., each of the expandable microspheres expands, but does not rupture, the polymer shell by a sufficient amount to at least double the interior volume. A markable comprises a substrate and a viewable layer secured thereto. The viewable layer comprises a binder material retaining the PTSM-coated expandable microspheres. A method of marking a markable article comprises imagewise exposing the PTSM-coated expandable microspheres of the markable article to at least sufficient electromagnetic radiation to cause the PTSM-coated expandable microspheres to expand thereby creating a predetermined image. A marked article preparable according to the method is also disclosed.
Abstract:
A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.
Abstract:
The present disclosure provides an article including an organic layer having a nanostructured first surface including nanofeatures defining nanorecesses and an opposing second surface; and a ceramic layer disposed on the nanostructured first surface of the organic layer and filling at least a portion of the nanorecesses. The ceramic layer has a nanostructured first surface including nanofeatures and an opposing second surface, and the nanostructured first surface of the ceramic layer is interpenetrated with the nanostructured first surface of the organic layer. The present disclosure also provides a method of making the article. The method includes obtaining an organic layer having a nanostructured first surface including nanofeatures defining nanorecesses and an opposing second surface; and filling at least a portion of the nanorecesses of the nanostructured first surface of the organic layer with a ceramic material to form the article. In addition, the present disclosure provides articles including interpenetrating layers having different elastic storage moduli, such as non-metallic layers, and methods of making the articles. The articles can exhibit high abrasion resistance.
Abstract:
Capacitive sensing devices are provided that include a sensing pattern of conductive traces disposed upon the surface of a substrate and a first passive circuit element that includes a metallic conductor disposed upon the same surface of the substrate. In some embodiments, the first passive circuit element is a component of an electronic circuit that can be, for example, a low pass filter. Provided capacitive sensing devices are useful, for example, when incorporated into projected touch screen display panels for use on electronic devices.
Abstract:
A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.
Abstract:
A touch screen sensor includes a visible light transparent substrate and an electrically conductive micropattern disposed on or in the visible light transparent substrate. The micropattern includes a first region micropattern within a touch sensing area and a second region micropattern. The first region micropattern has a first sheet resistance value in a first direction, is visible light transparent, and has at least 90% open area. The second region micropattern has a second sheet resistance value in the first direction. The first sheet resistance value is different from the second sheet resistance value.
Abstract:
Electromagnetic interference (EMI) shielding composites with high-loading-level ceramic beads and methods of making and using the same are described. The composites include high-loading-level of ceramic beads distributed inside a polymer matrix. The ceramic beads have a substantially spherical shape. The ceramic beads are formed by melting ceramic powders or particles. In some cases, the ceramic beads include ferrite beads.