Abstract:
Systems, methods, and computer-readable media for provisioning credentials are provided. In one example embodiment, an electronic device may include a communications component that receives encrypted commerce credential data from a service provider subsystem. The electronic device may also include a secure element that, inter alia, generates on the secure element a secure element public key and a secure element private key, derives on the secure element a secure element shared secret from the secure element private key, derives on the secure element a secure element secure key from the secure element shared secret, and decrypts on the secure element the encrypted commerce credential data using the secure element secure key. Additional embodiments are also provided.
Abstract:
An electronic device (such as a cellular telephone) automatically installs and personalizes updates to an applet on a secure element in the electronic device. In particular, when a digitally signed update package containing the update is received from an updating device (such as a server), the secure element identifies any previous versions of the applet installed on the secure element. If there are any previously installed versions, the secure element verifies the digital signature of the update package using an encryption key associated with a vendor of the secure element. Then, the secure element uninstalls the previous versions of the applet and exports the associated user data. Next, the secure element installs the update to the applet, and personalizes the new version of the applet using the user data.
Abstract:
Systems, methods, and computer-readable media for managing credentials are provided. In one example embodiment, an electronic device may include a secure element with a security domain element stored on the secure element. The electronic device may also include a processor component that may be configured to, inter alia, permanently terminate the functionality of the security domain element, after the functionality has been permanently terminated, communicatively couple the electronic device to a trusted service manager, and transmit data to the communicatively coupled trusted service manager that may be usable by the trusted service manager to determine that the functionality has been permanently terminated. Additional embodiments are also provided.
Abstract:
In order to validate a user to facilitate conducting a high-valued financial transaction via wireless communication between an electronic device (such as a smartphone) and another electronic device (such as a point-of-sale terminal), the electronic device may authenticate the user prior to the onset of the high-valued financial transaction. In particular, a secure enclave processor in a processor may provide local validation information that is specific to the electronic device to a secure element in the electronic device when received local authentication information that is specific to the electronic device (such as a biometric identifier of the user) matches stored authentication information. Moreover, an authentication applet in the secure element may provide the local validation information to an activated payment applet in the secure element. This may enable the payment applet to conduct the high-valued financial transaction via wireless communication, such as near-field communication.
Abstract:
Systems, methods, and computer-readable media for securely conducting online payments with a secure element of an electronic device are provided. In one example embodiment, a method includes, inter alia, at an electronic device, generating first data that includes payment card data, generating second data by encrypting the first data and merchant information with a first key, transmitting to a commercial entity subsystem the generated second data, receiving third data that includes the first data encrypted with a second key that is associated with the merchant information, and transmitting the received third data to a merchant subsystem that is associated with the merchant information, where the first key is not accessible to the merchant subsystem, and where the second key is not accessible to the electronic device. Additional embodiments are also provided.
Abstract:
An embodiment includes a method to increase the efficiency of security checkpoint operations. A security checkpoint kiosk serves as a Relying Party System (RPS). The RPS establishes a secure local connection between the RPS and a User Mobile-Identification-Credential Device (UMD). The RPS sends a user information request to the UMD, via the secure local connection, seeking release of user information associated with a Mobile Identification Credential (MIC). The RPS obtains authentication of the user information received in response to the user information request. The RPS retrieves user travel information based on the user information. The RPS determines that the user travel information matches the user information. When the user travel information matches the user information, the RPS approves the user to proceed past the security checkpoint kiosk.
Abstract:
An embodiment includes a method to increase the efficiency of security checkpoint operations. A security checkpoint kiosk serves as a Relying Party System (RPS). The RPS establishes a secure local connection between the RPS and a User Mobile-Identification-Credential Device (UMD). The RPS sends a user information request to the UMD, via the secure local connection, seeking release of user information associated with a Mobile Identification Credential (MIC). The RPS obtains authentication of the user information received in response to the user information request. The RPS retrieves user travel information based on the user information. The RPS determines that the user travel information matches the user information. When the user travel information matches the user information, the RPS approves the user to proceed past the security checkpoint kiosk.
Abstract:
Techniques are disclosed relating to authenticate a user with a mobile device. In one embodiment, a computing device includes a short-range radio and a secure element. The computing device reads, via the short-range radio, a portion of credential information stored in a circuit embedded in an identification document issued by an authority to a user for establishing an identity of the user. The computing device issues, to the authority, a request to store the credential information, the request specifying the portion of the credential information. In response to an approval of the request, the computing device stores the credential information in the secure element, the credential information being usable to establish the identity of the user. In some embodiments, the identification document is a passport that includes a radio-frequency identification (RFID) circuit storing the credential information, and the request specifies a passport number read from the RFID circuit.
Abstract:
An embodiment includes a method to increase the efficiency of security checkpoint operations. A security checkpoint kiosk serves as a Relying Party System (RPS). The RPS establishes a secure local connection between the RPS and a User Mobile-Identification-Credential Device (UMD). The RPS sends a user information request to the UMD, via the secure local connection, seeking release of user information associated with a Mobile Identification Credential (MIC). The RPS obtains authentication of the user information received in response to the user information request. The RPS retrieves user travel information based on the user information. The RPS determines that the user travel information matches the user information. When the user travel information matches the user information, the RPS approves the user to proceed past the security checkpoint kiosk.
Abstract:
Techniques are disclosed relating to authenticate a user with a mobile device. In one embodiment, a computing device includes a short-range radio and a secure element. The computing device reads, via the short-range radio, a portion of credential information stored in a circuit embedded in an identification document issued by an authority to a user for establishing an identity of the user. The computing device issues, to the authority, a request to store the credential information, the request specifying the portion of the credential information. In response to an approval of the request, the computing device stores the credential information in the secure element, the credential information being usable to establish the identity of the user. In some embodiments, the identification document is a passport that includes a radio-frequency identification (RFID) circuit storing the credential information, and the request specifies a passport number read from the RFID circuit.