Abstract:
An alignment system, method and lithographic apparatus are provided for determining the position of an alignment mark, the alignment system comprising a first system configured to produce two overlapping images of the alignment mark that are rotated by around 180 degrees with respect to one another, and a second system configured to determine the position of the alignment mark from a spatial distribution of an intensity of the two overlapping images.
Abstract:
A structure of interest (T) is irradiated with radiation for example in the x-ray or EUV waveband, and scattered radiation is detected by a detector (19, 274, 908, 1012). A processor (PU) calculates a property such as linewidth (CD) or overlay (OV), for example by simulating (S16) interaction of radiation with a structure and comparing (S17) the simulated interaction with the detected radiation. The method is modified (S14a, S15a, S19a) to take account of changes in the structure which are caused by the inspection radiation. These changes may be for example shrinkage of the material, or changes in its optical characteristics. The changes may be caused by inspection radiation in the current observation or in a previous observation.
Abstract:
A substrate is provided with device structures and metrology structures (800). The device structures include materials exhibiting inelastic scattering of excitation radiation of one or more wavelengths. The device structures include structures small enough in one or more dimensions that the characteristics of the inelastic scattering are influenced significantly by quantum confinement. The metrology structures (800) include device-like structures (800b) similar in composition and dimensions to the device features, and calibration structures (800a). The calibration structures are similar to the device features in composition but different in at least one dimension. Using an inspection apparatus and method implementing Raman spectroscopy, the dimensions of the device-like structures can be measured by comparing spectral features of radiation scattered inelastically from the device-like structure and the calibration structure.
Abstract:
A method of inferring a value for at least one local uniformity metric relating to a product structure, the method including: obtaining intensity data including an intensity image relating to at least one diffraction order obtained from a measurement on a target; obtaining at least one intensity distribution from the intensity image; determining, from the at least one intensity distribution, an intensity indicator expressing a variation of either intensity over the at least one diffraction order, or a difference in intensity between two complimentary diffraction orders over the intensity image; and inferring the value for the at least one local uniformity metric from the intensity indicator.
Abstract:
An illumination and detection apparatus for a metrology tool, and associated method. The apparatus includes an illumination arrangement operable to produce measurement illumination having a plurality of discrete wavelength bands and having a spectrum having no more than a single peak within each wavelength band. The detection arrangement includes a detection beamsplitter to split scattered radiation into a plurality of channels, each channel corresponding to a different one of the wavelength bands; and at least one detector for separate detection of each channel.
Abstract:
A method provides the steps of receiving an image from a metrology tool, determining individual units of said image and discriminating the units which provide accurate metrology values. The images are obtained by measuring the metrology target at multiple wavelengths. The discrimination between the units, when these units are pixels in said image, is based on calculating a degree of similarity between said units.
Abstract:
A method includes receiving an image formed in a metrology apparatus wherein the image comprises at least the resulting effect of at least two diffraction orders, and processing the image wherein the processing comprises at least a filtering step, for example a Fourier filter. The process of applying a filter may be obtained also by placing an aperture in the detection branch of the metrology apparatus.
Abstract:
A method including directing, by an optical system, an illumination beam to a surface of a substrate, providing relative motion between the directed illumination beam and the substrate until the directed illumination beam is illuminated on a grating underneath an edge or a notch of the substrate, diffracting, by the grating, at least a portion of the illumination beam, and detecting, by the detector, the diffracted illumination.
Abstract:
A method to determine a patterning process parameter, the method comprising: for a target, calculating a first value for an intermediate parameter from data obtained by illuminating the target with radiation comprising a central wavelength; for the target, calculating a second value for the intermediate parameter from data obtained by illuminating the target with radiation comprising two different central wavelengths; and calculating a combined measurement for the patterning process parameter based on the first and second values for the intermediate parameter.
Abstract:
Disclosed are a method, computer program and a metrology apparatus for measuring a process effect parameter relating to a manufacturing process for manufacturing integrated circuits on a substrate. The method comprises determining for a structure, a first quality metric value for a quality metric from a plurality of measurement values each relating to a different measurement condition while cancelling or mitigating for the effect of the process effect parameter on the plurality of measurement values and a second quality metric value for the quality metric from at least one measurement value relating to at least one measurement condition without cancelling or mitigating for the effect of the process effect parameter on the at least one measurement value. The process effect parameter value for the process effect parameter can then be calculated from the first quality metric value and the second quality metric value, for example by calculating their difference.