Abstract:
Segmented scaffolds composed of disconnected scaffold segments with overlapping end rings are disclosed. Scaffolds with at least one discontinuous link are also disclosed.
Abstract:
Implantable medical devices including a coating having a bioactive agent and a poly(ester amide) polymer. Methods of forming these coatings are also described.
Abstract:
Hyaluronic acid (HA) conjugates or crosslinked HAs compositions for coating an implantable device are provided. The implantable device can be used for treating a disorder such as atherosclerosis, thrombosis, restenosis, high cholesterol, hemorrhage, vascular dissection or perforation, vascular aneurysm, vulnerable plaque, chronic total occlusion, claudication, anastomotic proliferation for vein and artificial grafts, bile duct obstruction, ureter obstruction, tumor obstruction, and combinations thereof.
Abstract:
The present invention provides an implantable device having a coating including a slow dissolving polymer or material and the methods of making and using the same.
Abstract:
The present invention provides a coating comprising a semi-crystalline polymer on an implantable device and methods of making and using the same.
Abstract:
Methods and devices relating to polymer-bioceramic composite implantable medical devices, such as stents are disclosed. A suspension solution is formed including a fluid, a biodegradable polymer, and bioceramic particles. The biodegradable polymer and particles are precipitated from the suspension to form a mixture. A composite is formed by combining the mixture with another polymer and a scaffolding is formed from the composite.
Abstract:
Bioabsorbable scaffolds having high crush recoverability, high fracture resistance, and reduced or no recoil due to self expanding properties at physiological conditions are disclosed. The scaffolds are made from a random copolymer of PLLA and a rubbery polymer such as polycaprolactone.
Abstract:
Bioabsorbable scaffolds having high crush recoverability, high fracture resistance, and reduced or no recoil due to self expanding properties at physiological conditions are disclosed. The scaffolds are made from a random copolymer of PLLA and a rubbery polymer such as polycaprolactone.
Abstract:
Bioabsorbable scaffolds having high crush recoverability, high fracture resistance, and reduced or no recoil due to self expanding properties at physiological conditions are disclosed. The scaffolds are made from a random copolymer of PLLA and a rubbery polymer such as polycaprolactone.
Abstract:
Segmented scaffolds composed of disconnected scaffold segments with overlapping end rings are disclosed. Scaffolds with at least one discontinuous link are also disclosed.