摘要:
A method for forming a silicon alloy based barrier layer comprises providing a substrate having a dielectric layer including a trench, placing the substrate in a reactor, and carrying out a process cycle, wherein the process cycle comprises introducing a silicon containing precursor into the reactor, introducing a metal containing precursor into the reactor, and introducing a co-reactant into the reactor, wherein the silicon, metal, and co-reactant react to form a silicon alloy layer that is conformally deposited on a bottom and a sidewall of the trench.
摘要:
Noble metal barrier layers are disclosed. In one aspect, an apparatus may include a substrate, a dielectric layer over the substrate, and an interconnect structure within the dielectric layer. The interconnect structure may have a bulk metal and a barrier layer. The barrier layer may be disposed between the bulk metal and the dielectric layer. The barrier layer may include one or more metals selected from iridium, platinum, palladium, rhodium, osmium, gold, silver, rhenium, ruthenium, tungsten, and nickel.
摘要:
This invention relates to organometallic compounds having the formula (L1)M(L2)y wherein M is a metal or metalloid, L1 is a substituted or unsubstituted anionic 6 electron donor ligand, L2 is the same or different and is (i) a substituted or unsubstituted anionic 2 electron donor ligand, (ii) a substituted or unsubstituted anionic 4 electron donor ligand, (iii) a substituted or unsubstituted neutral 2 electron donor ligand, or (iv) a substituted or unsubstituted anionic 4 electron donor ligand with a pendant neutral 2 electron donor moiety; and y is an integer of from 1 to 3; and wherein the sum of the oxidation number of M and the electric charges of L1 and L2 is equal to 0; a process for producing the organometallic compounds, and a method for producing a film or coating from the organometallic compounds. The organometallic compounds are useful in semiconductor applications as chemical vapor or atomic layer deposition precursors for film depositions.
摘要:
This invention relates to organometallic compounds having the formula L1ML2 wherein M is a metal or metalloid, L1 is a substituted or unsubstituted 6 electron donor anionic ligand, and L2 is a substituted or unsubstituted 6 electron donor anionic ligand, wherein L1 and L2 are the same or different, a process for producing the organometallic compounds, and a method for producing a film or coating from the organometallic compounds. The organometallic compounds are useful in semiconductor applications as chemical vapor or atomic layer deposition precursors for film depositions.
摘要:
Noble metal barrier layers are disclosed. In one aspect, an apparatus may include a substrate, a dielectric layer over the substrate, and an interconnect structure within the dielectric layer. The interconnect structure may have a bulk metal and a barrier layer. The barrier layer may be disposed between the bulk metal and the dielectric layer. The barrier layer may include one or more metals selected from iridium, platinum, palladium, rhodium, osmium, gold, silver, rhenium, ruthenium, tungsten, and nickel.
摘要:
A magnetic insulator nanolaminate device comprises a metal magnetic layer formed on a substrate, an insulating layer formed on the metal magnetic layer, wherein the insulating layer is formed by nitriding a portion of the metal magnetic layer, a chelating group layer formed on the insulating layer, and a metal seed layer bonded to the chelating group layer. The magnetic insulator nanolaminate device may be formed by depositing a metal layer on a substrate, converting a portion of the metal layer into an insulating layer using a nitridation process, and depositing a metal seed layer onto the insulating layer using a metal immobilization process, wherein the metal seed layer enables the deposition of a metal layer onto the insulating layer.
摘要:
A method of forming a copper alloy seed layer comprises providing a substrate in a reactor, performing a first ALD process to fabricate an alloy metal layer on the substrate, wherein the first ALD process uses an alloy metal precursor selected from a group of specific alloy metal precursors, performing a second ALD process to fabricate a copper metal layer on the alloy metal layer, wherein the second ALD process uses a copper metal precursor selected from a group of specific copper metal precursors, and annealing the alloy metal layer and the copper metal layer to form a graded Cu-alloy layer.
摘要:
A method for forming a silicon alloy based barrier layer comprises providing a substrate having a dielectric layer including a trench, placing the substrate in a reactor, and carrying out a process cycle, wherein the process cycle comprises introducing a silicon containing precursor into the reactor, introducing a metal containing precursor into the reactor, and introducing a co-reactant into the reactor, wherein the silicon, metal, and co-reactant react to form a silicon alloy layer that is conformally deposited on a bottom and a sidewall of the trench.
摘要:
A method of forming an integrated silicon voltage regulator (ISVR) comprises providing a nano-encapsulated magnetic particle (NEMP) suspension, depositing a first layer of the NEMP suspension on an integrated circuit (IC) device, curing the first layer of the NEMP suspension to form a first NEMP composite layer, forming at least one inductor wire on the NEMP composite layer, depositing an interlayer dielectric material over the inductor wire, depositing a second layer of the NEMP suspension on the interlayer dielectric material, and curing the second layer of the NEMP suspension to form a second NEMP composite layer.
摘要:
Methods and associated structures of forming a microelectronic structure are described. Those methods may comprise dissolving a metal precursor in a non-aqueous solvent in a bath; placing a substrate comprising an interconnect opening in the bath, wherein the metal precursor forms a monolayer within the interconnect opening; and placing the substrate in a coreactant mixture, wherein the coreactant reacts with the metal precursor to form a thin barrier monolayer.