SiGe PHOTODIODE
    31.
    发明申请
    SiGe PHOTODIODE 有权
    SiGe光电

    公开(公告)号:US20110012221A1

    公开(公告)日:2011-01-20

    申请号:US12919638

    申请日:2009-03-09

    Abstract: The lattice mismatching between a Ge layer and a Si layer is as large as about 4%. Thus, when the Ge layer is grown on the Si layer, penetration dislocation is introduced to cause leakage current at the p-i-n junction. Thereby, the photo-detection sensitivity is reduced, and the reliability of the element is also lowered. Further, in the connection with a Si waveguide, there are also problems of the reflection loss due to the difference in refractive index between Si and Ge, and of the absorption loss caused by a metal electrode. In order to solve said problems, according to the present invention, there is provided a vertical type pin-SiGe photodiode having a structure which is embedded in a groove formed in a part of a Si layer, in which a p-type or n-type doped layer is formed in a lower section of the groove, and in which a i-SiGe layer having a rectangular shape or a reverse tapered shape is formed on a layered structure formed by laminating a i-Si layer and a SiGe buffer layer on the lower section and the side wall of the groove. Further, in an optical connection section with a Si waveguide, impedance matching is effected by the layered structure composed of the i-Si layer and the SiGe buffer layer, and an upper metal layer is separated therefrom so that a poly-Si bridge structure is employed to electrically connect the upper metal layer therewith.

    Abstract translation: Ge层与Si层之间的晶格失配大至4%左右。 因此,当Ge层在Si层上生长时,引入穿透位错以在p-i-n结处引起漏电流。 因此,光检测灵敏度降低,并且元件的可靠性也降低。 此外,在与Si波导的连接中,还存在由于Si和Ge之间的折射率的差异以及由金属电极引起的吸收损耗的反射损耗的问题。 为了解决所述问题,根据本发明,提供了一种垂直型pin-SiGe光电二极管,其具有嵌入到形成在Si层的一部分中的凹槽中的结构,其中p型或n- 在沟槽的下部形成有型掺杂层,其中在通过层叠i-Si层和SiGe缓冲层而形成的层叠结构上形成具有矩形或倒锥形的i-SiGe层 凹槽的下部和侧壁。 此外,在具有Si波导的光学连接部中,通过由i-Si层和SiGe缓冲层构成的层叠结构实现阻抗匹配,并且将上部金属层与其分离,使得多Si桥结构 用于将上部金属层电连接到其上。

    WAVEGUIDE PATH COUPLING-TYPE PHOTODIODE
    32.
    发明申请
    WAVEGUIDE PATH COUPLING-TYPE PHOTODIODE 有权
    波导路耦合型光电转换器

    公开(公告)号:US20100119192A1

    公开(公告)日:2010-05-13

    申请号:US12598162

    申请日:2008-04-30

    Abstract: In a waveguide path coupling-type photodiode, a semiconductor light absorbing layer and an optical waveguide path core are adjacently arranged. An electrode formed of at least one layer is installed in a boundary part of the semiconductor light absorbing layer and the optical waveguide path core. The electrodes are arranged at an interval of (1/100)λ to λ [λ: wavelength of light transmitted through optical waveguide path core]. At least a part of the electrodes is embedded in the semiconductor light absorbing layer. Embedding depth from a surface of the semiconductor light absorbing layer is a value not more than λ/(2ns) [ns: refractive index of semiconductor light absorbing layer]. At least one layer of the electrode is constituted of a material which can surface plasmon-induced.

    Abstract translation: 在波导路耦合型光电二极管中,相邻地配置有半导体光吸收层和光波导路径芯。 由至少一层形成的电极安装在半导体光吸收层和光波导路径芯的边界部分。 电极以(1/100)λ至λ[λ:通过光波导路径芯透射的光的波长]的间隔布置。 至少一部分电极嵌入在半导体光吸收层中。 从半导体光吸收层的表面嵌入深度是不大于λ/(2ns)[ns:半导体光吸收层的折射率]的值。 至少一层电极由可以表面等离子体激发的材料构成。

    OPTICAL WAVEGUIDE, OPTICAL DEVICE, AND OPTICAL COMMUNICATION DEVICE
    33.
    发明申请
    OPTICAL WAVEGUIDE, OPTICAL DEVICE, AND OPTICAL COMMUNICATION DEVICE 审中-公开
    光学波导,光学设备和光通信设备

    公开(公告)号:US20090285522A1

    公开(公告)日:2009-11-19

    申请号:US11813417

    申请日:2006-01-06

    CPC classification number: G02B6/1225 B82Y20/00 G02B6/126

    Abstract: There is provided an optical device and an optical waveguide composed of a photonic crystal in which two optical waveguide modes that are orthogonal to a light propagation direction can be used, whereby design latitude is increased.In the optical waveguide device composed of a photonic crystal, in a dispersion relationship of the photonic crystal, light is propagated using a refractive index guide mode that is a minimum frequency optical waveguide mode. Alternatively, two optical waveguide modes that are orthogonal to light propagation direction are used, a linear defect waveguide mode is used for the first optical waveguide mode; and light is propagated in the second light guide mode by using a refractive index guide mode that is a minimum frequency optical waveguide mode in a dispersion relationship of the photonic crystal. Alternatively, in a dispersion relationship of the photonic crystal, light is propagated in two optical waveguide modes that are orthogonal to a light propagation direction using a refractive index guide mode that is a minimum frequency optical waveguide mode.

    Abstract translation: 提供一种光学器件和由光子晶体组成的光波导,其中可以使用与光传播方向正交的两个光波导模式,从而增加设计的纬度。 在由光子晶体构成的光波导装置中,以光子晶体的色散关系,使用作为最小频率光波导模式的折射率引导模式传播光。 或者,使用与光传播方向正交的两个光波导模式,对于第一光波导模式使用线性缺陷波导模式; 并且通过使用作为光子晶体的色散关系中的最小频率光波导模式的折射率引导模式,以第二导光模式传播光。 或者,在光子晶体的色散关系中,使用作为最小频率光波导模式的折射率引导模式,在与光传播方向正交的两个光波导模式中传播光。

    Photonic crystal optical circuit and method for controlling the same
    34.
    发明申请
    Photonic crystal optical circuit and method for controlling the same 有权
    光子晶体光电路及其控制方法

    公开(公告)号:US20060261324A1

    公开(公告)日:2006-11-23

    申请号:US10543649

    申请日:2003-12-22

    CPC classification number: G02F1/365 G02F1/3515 G02F2202/32

    Abstract: In an optical circuit including multi-dimensional photonic crystals, in which the optical circuit has a structure (33), such as a light emitting member or a light receiving member, having a natural resonance frequency, another structure (34) having a natural resonance frequency slightly differing from the natural resonance frequency of the structure (33) is arranged in the vicinity of the structure (33) to control the directivity of localization and propagation of an electromagnetic field, light emission and light reception in a spatial region including the above structures in the multi-dimensional photonic crystals, in order to permit functional operations to be realized.

    Abstract translation: 在包括多维光子晶体的光电路中,其中光电路具有具有天然共振频率的诸如发光部件或光接收部件的结构(33),具有天然共振的另一结构(34) 与结构(33)的固有谐振频率稍微不同的频率被布置在结构(33)附近,以控制在包括上述的空间区域中的电磁场,发光和光接收的定位和传播的方向性 多维光子晶体中的结构,以便实现功能操作。

Patent Agency Ranking