摘要:
The present invention is an optical semiconductor device including a lower clad layer 12 having a first conduction type, an active layer 14 that is provided on the lower clad layer 12 and has multiple quantum dot layers 51-55 having multiple quantum dots 41, and an upper clad layer 18 that is provided on the active layer 14 and has a second conduction type opposite to the first conduction type, the multiple quantum dot layers 51-55 having different quantum dot densities.
摘要:
The lattice mismatching between a Ge layer and a Si layer is as large as about 4%. Thus, when the Ge layer is grown on the Si layer, penetration dislocation is introduced to cause leakage current at the p-i-n junction. Thereby, the photo-detection sensitivity is reduced, and the reliability of the element is also lowered. Further, in the connection with a Si waveguide, there are also problems of the reflection loss due to the difference in refractive index between Si and Ge, and of the absorption loss caused by a metal electrode. In order to solve said problems, according to the present invention, there is provided a vertical type pin-SiGe photodiode having a structure which is embedded in a groove formed in a part of a Si layer, in which a p-type or n-type doped layer is formed in a lower section of the groove, and in which a i-SiGe layer having a rectangular shape or a reverse tapered shape is formed on a layered structure formed by laminating a i-Si layer and a SiGe buffer layer on the lower section and the side wall of the groove. Further, in an optical connection section with a Si waveguide, impedance matching is effected by the layered structure composed of the i-Si layer and the SiGe buffer layer, and an upper metal layer is separated therefrom so that a poly-Si bridge structure is employed to electrically connect the upper metal layer therewith.
摘要:
In a waveguide path coupling-type photodiode, a semiconductor light absorbing layer and an optical waveguide path core are adjacently arranged. An electrode formed of at least one layer is installed in a boundary part of the semiconductor light absorbing layer and the optical waveguide path core. The electrodes are arranged at an interval of (1/100)λ to λ [λ: wavelength of light transmitted through optical waveguide path core]. At least a part of the electrodes is embedded in the semiconductor light absorbing layer. Embedding depth from a surface of the semiconductor light absorbing layer is a value not more than λ/(2ns) [ns: refractive index of semiconductor light absorbing layer]. At least one layer of the electrode is constituted of a material which can surface plasmon-induced.
摘要:
A light receiving circuit (114) includes a light inputting circuit (113) which converts one-system optical signal to be outputted from an optical transmission path (101) to an electrical signal and inverts a potential of the electrical signal each time the optical signal is detected, and a buffer circuit (110) which amplifies the electrical signal converted by the light inputting circuit and outputs the same. According to such configuration, since one-system optical signal may be inputted to the light receiving circuit, a system circuit configuration can be avoided to be complicated.
摘要:
In a waveguide path coupling-type photodiode, a semiconductor light absorbing layer and an optical waveguide path core are adjacently arranged. An electrode formed of at least one layer is installed in a boundary part of the semiconductor light absorbing layer and the optical waveguide path core. The electrodes are arranged at an interval of (1/100)λ to λ [λ: wavelength of light transmitted through optical waveguide path core]. At least a part of the electrodes is embedded in the semiconductor light absorbing layer. Embedding depth from a surface of the semiconductor light absorbing layer is a value not more than λ/(2 ns) [ns: refractive index of semiconductor light absorbing layer]. At least one layer of the electrode is constituted of a material which can surface plasmon-induced.
摘要:
A light receiving circuit (114) includes a light inputting circuit (113) which converts one-system optical signal to be outputted from an optical transmission path (101) to an electrical signal and inverts a potential of the electrical signal each time the optical signal is detected, and a buffer circuit (110) which amplifies the electrical signal converted by the light inputting circuit and outputs the same. According to such configuration, since one-system optical signal may be inputted to the light receiving circuit, a system circuit configuration can be avoided to be complicated.
摘要:
Provided is a semiconductor optical interconnection device capable of transmitting signals between laminated semiconductor chips in a structure where semiconductor chips highly functionalized by being bonded to an optical interconnection chip are laminated. The semiconductor optical interconnection device includes a semiconductor chip 1 and an optical interconnection chip 2. The optical interconnection chip 2 includes an optical element formed thereon (for instance, a photo-sensitive element, a luminous element, or an optical modulator) which has a function relating to signal conversion between light and electricity. The semiconductor chip 1 includes a transmission section 3 (for instance, a coil or an inductor) to transmit signals in a non-contact manner, and a connection section 4 (for instance, a bump) to electrically connect with the optical element.
摘要:
Intended is to provide a device structure, which makes the light receiving sensitivity and the high speediness of a photodiode compatible. Also provided is a Schottky barrier type photodiode having a conductive layer formed on the surface of a semiconductor layer. The photodiode is so constituted that a light can be incident on the back side of the semiconductor layer, and that a periodic structure, in which a light incident from the back side of the semiconductor layer causes a surface plasmon resonance, is made around the Schottky junction of the photodiode.
摘要:
A photodiode includes: an upper spacer layer including a semiconductor transparent to incident light; a metal periodic structure provided on the upper spacer layer and arranged to induce surface plasmon, the metal periodic structure including first and second electrodes including portions arranged alternately on the upper spacer layer; a light absorption layer formed under the upper spacer layer and including a semiconductor having a refractive index higher than that of the upper spacer layer; and a lower spacer layer formed under the light absorption layer and having a refractive index smaller than that of the light absorption layer. Each of the first and second electrodes forms a Schottky barrier junction with the upper spacer layer.
摘要:
Disclosed are a novel hydantoin racemase and a process for producing an optically active N-carbamylamino acid or an optically active amino acid using the hydantoin racemase. A novel hydantoin racemase isolated and purified from Bacillus sp. Strain KNK519HR; a gene encoding the hydantoin racemase; a recombinant plasmid having the gene introduced therein; a transformant having the hydantoin racemase gene introduced therein; and a process for producing an optically active N-carbamylamino acid or an optically active amino acid characterized in that a 5-substituted hydantoin compound is treated in the presence of hydantoinase and N-carbamylamino acid amidohydrolase as well as the hydantoin racemase.