Abstract:
A printed circuit board (PCB) is provided that maximizes compensation capacitance per unit area of the PCB while minimizing signal transmission delays in the PCB. The PCB includes a first section having a first dielectric constant (DK), a second section having a second DK lower than the first DK and provided above or below the first section, a plurality of crosstalk compensation elements provided in the first section, and a plurality of circuit elements provided in the second section.
Abstract:
Printed wiring boards for communications connectors are provided that include a mounting substrate having at least first through third input terminals and first through third output terminals. A first conductive path connects the first input terminal to the first output terminal, a second conductive path connects the second input terminal to the second output terminal and a third conductive path connects the third input terminal to the third output terminal. A first inductor and a first capacitor are coupled between the first conductive path and the second conductive path, where the first inductor and the first capacitor are arranged in series to provide a first series inductor-capacitor circuit. A second capacitor is coupled between the third conductive path and the second conductive path through the first inductor to provide a second series inductor-capacitor circuit that shares the inductor of the first series inductor-capacitor circuit. Communications connectors that include such wiring boards or equivalent structures are also provided.
Abstract:
A connector is provided for simultaneously improving both the NEXT high frequency performance when low crosstalk plugs are used and the NEXT low frequency performance when high crosstalk plugs are used. The connector includes a first compensation structure provided on an inner metalized layer of the PCB at a first stage area of the PCB, and a second compensation structure, provided at a second stage area of the PCB, for increasing compensation capacitance with increasing frequency.
Abstract:
Communications connectors are disclosed that include a housing having an upper end and a lower end, the upper end of the housing including a plurality of slits that define a plurality of pillars. First and second pairs of tip and ring insulation displacement contacts (IDCs) are mounted in the housing. Each of the IDCs has an upper end that has a first slot, a lower end that has a second slot and an intermediate portion between the upper end and the lower end, the lower end being offset from the upper end. The first slot of each IDC is aligned with a respective one of the slits. The housing further includes through slots that are separated by dividers, where each of the through slots is sized to receive the upper end of a respective one of the IDCs, and each slit of the plurality of slits exposes inner edges of the first slot of a respective one of the IDCs.
Abstract:
A connector is provided for simultaneously improving both the NEXT high frequency performance when low crosstalk plugs are used and the NEXT low frequency performance when high crosstalk plugs are used. The connector includes PCB substrates made of materials having different dielectric frequency characteristics.
Abstract:
A connector is provided for simultaneously improving both the NEXT high frequency performance when low crosstalk plugs are used and the NEXT low frequency performance when high crosstalk plugs are used. The connector includes a first compensation structure provided on an inner metalized layer of the PCB at a first stage area of the PCB, and a second compensation structure, provided at a second stage area of the PCB, for increasing compensation capacitance with increasing frequency.
Abstract:
A connector is provided for simultaneously improving both the NEXT high frequency performance when low crosstalk plugs are used and the NEXT low frequency performance when high crosstalk plugs are used. The connector includes PCB substrates made of materials having different dielectric frequency characteristics.
Abstract:
A communications jack assembly includes: a jack frame having a plug aperture; a dielectric mounting substrate attached to the jack frame; and a plurality of conductors engaged with the mounting substrate, each of the conductors including a fixed end portion mounted with the mounting substrate and a free end portion extending into the plug aperture for electrical contact with a mating plug, each of the free end portions having substantially the same profile and being substantially transversely aligned in side-by-side relationship. A first pair of conductors is sandwiched inside a second pair of conductors. The second pair of conductors includes a crossover, the positioning of crossover being selected to provide differential to common mode crosstalk compensation.
Abstract:
A connector is provided for compensating crosstalk with respect to an adjacently placed connector. Each of the connectors includes a printed circuit board (PCB), a plurality of pairs of contacts on the PCB, a plurality of pads disposed at edge portions of the PCB for compensating crosstalk, and a plurality of connecting parts for connecting electrically the pads to the pairs of contacts.
Abstract:
A communications connector includes: a dielectric mounting substrate; at least four pairs of conductors mounted on the mounting substrate, each of the conductors including a free end segment, each of the free end segments being positioned in side-by-side and generally parallel relationship; and at least four pairs of terminals mounted on the mounting substrate, wherein each of the pairs of terminals is electrically connected to a respective pair of conductors. A first pair of conductor free end segments is immediately adjacent each other, a second pair of conductor free end segments is immediately adjacent each other and positioned one side of the first pair, a fourth pair of conductor free end segments is immediately adjacent each other and positioned on an opposite side of the first pair, and a third pair of conductor free end segments sandwiches the first pair, with one of the conductor free end segments of the third pair being disposed between the first and second pairs, and the other of the conductor free end segments being disposed between the first and fourth pairs. Each of the first, second and fourth pairs of conductors includes a crossover between the conductors of the pairs, and the third pair of conductors includes three crossovers between its conductors.