Abstract:
A method for fabricating a gate structure having a polysilicon electrode using an oxygen-free chemistry to etch the polysilicon. In one embodiment, the chemistry further comprises nitrogen.
Abstract:
Openings of variable shape are made sequentially by alternately etching an opening in silicon and depositing a conformal fluorocarbon polymer on the sidewalls. This polymer protects the sidewalls of the opening from further etching. An isotropic etch can be carried out to change the profile of the etched feature, and for lift-off of the etched feature from the silicon substrate.
Abstract:
A method of etching a film stack that includes at least one layer of magnetic material comprises forming a high temperature mask on the film stack. The film stack is then etched. During the etching process, a residue is formed that comprises components of the high temperature mask. Since the residue and the high temperature mask comprise primarily the same material, the high temperature mask and the residue are simultaneously removed. The method may be used to form a film stack for use in a magneto-resistive random access memory (MRAM) device.
Abstract:
A method for preventing electrical short circuits in a multi-layer magnetic film stack comprises providing a film stack that includes a layer of magnetic material having an exposed surface. A protective layer is deposited on the exposed surface of the magnetic layer. The protective layer may comprise, for example, a fluorocarbon or a hydrofluorocarbon. The film stack is etched and the protective layer protects the exposed surface from a conductive residue produced while etching the film stack. The method may be used in film stacks to form a magneto-resistive random access memory (MRAM) device.
Abstract:
A method and apparatus for modulating the bias power applied to a wafer support pedestal within a plasma etch reactor. The modulation has an on/off duty cycle of between 10 and 90 percent. Such modulation of the bias power substantially improves the verticality of the etched features located near the edge of a semiconductor wafer as the wafer is being etched in a plasma etch reactor.
Abstract:
Apparatus for controlling a thermal conductivity profile of a pedestal in a semiconductor wafer processing system. One embodiment of the apparatus is a thermal shim that is positioned between a wafer retention device (e.g., electrostatic chuck) and a pedestal. The shim controls the thermal conductivity between the wafer retention device and the pedestal. In one embodiment, the thermal shim has a low thermally conductive region and a high thermally conductive region. In a further embodiment, the low thermally conductive region is a hole. By having a hole in the center of the shim, thus forming an annulus, an air gap is formed between the wafer retention device and the pedestal such that less heat will be transferred through the air gap as compared to the high thermally conductive region of the shim.
Abstract:
A method and apparatus for dicing a semiconductor wafer using a plasma etch process. The method begins by applying a patterned mask to the integrated circuits on a wafer. The pattern covers the circuits and exposes the streets between the dice. Next, the method deposits a uniform layer of adhesive material upon a carrier wafer. The wafer to be diced is affixed to the carrier wafer via the adhesive material that is sandwiched between the bottom surface of the wafer to be diced and the top surface of the carrier wafer. The combination assembly of the carrier wafer, adhesive and wafer to be diced is placed in an etch reactor that is capable of etching silicon. When the reactive gas is applied to the combination assembly, the etch plasma will consume the unprotected silicon within the streets and dice the wafer into individual integrated circuit chips. The carrier wafer is then removed from the etch chamber with the dice still attached to the adhesive layer. A well-known process is used to remove the adhesive material as well as any mask material and detach the dice from the carrier wafer.