Abstract:
A base station in a wireless network measures a total transmission power associated with calls in a cell of the wireless network, where the calls include answered calls and unanswered calls that originated in the cell. The base station further compares the measured total transmission power with a power threshold and performs at least one of the following: muting at least one of the unanswered calls downlink voice path based on the comparison, or disconnecting at least one of the unanswered calls based on the comparison.
Abstract:
System and method for controlling the transmit power of a mobile terminal. In some embodiments, a transmit power correction factor for a mobile terminal is set to the average transmit power correction factor for all active mobile terminals in the same cell as the mobile terminal.
Abstract:
A method for uplink power control at a mobile station which is served by a base station of a communications network comprising a plurality of base stations is provided where the power spectrum density of the mobile station is adaptable based on the bandwidth scheduled to the mobile station. The suggested power spectrum adaptation is obtained by providing for a switch to an alternative power control mode which enables for transmit power boosting at the mobile station. The decision whether to apply the suggested power spectrum adaptation can be made at the base station which is serving the mobile station, or at a selected mobile station.
Abstract:
A node in a wireless communication system comprising at least a first cell region and a second cell region, where cell borders delimit between different cell regions. The node comprises at least a first antenna function with a first antenna radiation lobe and a second antenna function with a second antenna radiation lobe, the radiation lobes being arranged to cover the first cell region at the same time. For each cell region, only one of the antenna radiation lobes is intended for communication at each cell border. Furthermore, the first antenna radiation lobe is arranged for signals at a first frequency band, and the second antenna radiation lobe is arranged for signals at least a second frequency band.
Abstract:
An object of the present invention is to provide a mechanism for handling a handover in a more efficient way. The invention relates to a method in a mobility controller (180) in a radio access network for preparing a handover. The method comprises the following steps to be taken during data transmission between a mobile terminal (140) and a source base station (120), before the handover: Sending a request to a candidate base station (122), which request aims at measuring and reporting timing alignment to be used by the mobile terminal (140) when communicating with the destination base station (122) after the handover, if the candidate base station becomes the destination base station (122) after the handover; receiving a report from the destination base station (122) comprising said requested timing alignment; and when the destination base station (122) is selected among the at least one candidate base stations, sending a message to the mobile terminal (140) to use said timing alignment received from the destination base station (122) when communicating with the destination base station (122) after the handover.
Abstract:
A method for providing co-channel interference information by a network node includes receiving information for at least one user equipment (UE) connected to an adjacent network node, determining a co-channel interference list for user equipment (UE) connected to the network node wherein the co-channel interference list is based on the received information and transmitting the co-channel interference list to a UE connected to the network node.
Abstract:
Embodiments herein relate to a method in a first communication node (201) for estimating pre-coding weights for transmission on a radio channel (205) between the first node (201) and a second communication node (203) in a communication network (200). The first node (201) comprises at least two transmit antennas. Each transmit antenna is configured to transmit on each of at least two sub-bands. The first node (201) obtains at least two pre-coding reports. Each pre-coding report is for a different time instance. Each pre-coding report comprises pre-coding weights or indications to pre-coding weights. The pre-coding weights are associated with each transmit antenna and with each sub-band. For each transmit antenna, the first node (201) estimates pre-coding weights for at least one of the sub-bands based on the pre-coding weights in the obtained pre-coding reports. The estimated pre-coding weights are different from a most resent of the obtained pre-coding reports.
Abstract:
Method and arrangement in a network entity for supporting link adaptation in a wireless communication system. The method comprises obtaining 204 one or more predicted parameters related to the quality of a radio link. The method further comprises measuring 206 one or more actual parameters, corresponding to the one or more predicted parameters. The method further comprises deriving 208 one or more error distributions based on the difference between the predicted and actual one or more parameters, from which error distributions a link adaptation margin estimate is derived, based on a predetermined radio link quality target. The link adaptation margin estimate is then used for supporting link adaptation for the radio link.
Abstract:
A method and network node (110, 120, 140) for determining an offset for selection of a cell of a first radio network node (110) is provided. The network node (110, 120, 140) comprises a processing circuit configured to determine the offset based on a first distance value for indicating distance between the first radio network node (110) and a second radio network node (120). The network node (110, 120, 140) further comprises a transmitter configured to send information about the offset.
Abstract:
Method and arrangement in a mobile terminal for predicting future data communication performance of transmissions between a base station and the mobile terminal. The base station and the mobile terminal are comprised in a wireless communication system. The method comprises receiving information from the base station, concerning the relation between distribution characteristics and the performance of established data communications via the base station, comparing the own distribution characteristics of the mobile terminal with the received information, determining the own predicted data communication performance based on the made comparison between the own distribution characteristics and the received information, and displaying the determined own predicted data communication performance on a display of the mobile terminal. Also, a method and arrangement in a base station for assisting a mobile terminal in predicting future data communication performance of transmissions is comprised.