Abstract:
A method of extracting hydrocarbons from a subterranean formation comprises forming a suspension comprising reactive particles and a carrier fluid. The suspension is introduced into a subterranean formation containing a hydrocarbon material. At least a portion of the reactive particles are exothermically reacted with at least one other material within the subterranean formation to form a treated hydrocarbon material from the hydrocarbon material. The treated hydrocarbon material is extracted from the subterranean formation. An additional method of extracting hydrocarbons from a subterranean formation, and a method of treating a hydrocarbon material within a subterranean formation are also described.
Abstract:
Method of fabricating polycrystalline diamond include functionalizing surfaces of diamond nanoparticles with fluorine, combining the functionalized diamond nanoparticles with a polymer to form a mixture, and subjecting the mixture to high pressure and high temperature (HPHT) conditions to form inter-granular bonds between the diamond nanoparticles. A green body includes a plurality of diamond nanoparticles functionalized with fluorine, and a polymer material interspersed with the plurality of diamond nanoparticles. A method of forming cutting element includes functionalizing surfaces of diamond nanoparticles with fluorine, and combining the functionalized diamond nanoparticles with a polymer to form a mixture. The mixture is formed over a body, and the mixture and the body are subjected to HPHT conditions to form inter-granular bonds between the diamond nanoparticles and secure the bonded diamond nanoparticles to the body.
Abstract:
Polycrystalline compacts include a polycrystalline superabrasive material comprising a first plurality of grains of superabrasive material having a first average grain size and a second plurality of grains of superabrasive material having a second average grain size smaller than the first average grain size. The first plurality of grains is dispersed within a substantially continuous matrix of the second plurality of grains. Earth-boring tools may include a body and at least one polycrystalline compact attached thereto. Methods of forming polycrystalline compacts may include coating relatively larger grains of superabrasive material with relatively smaller grains of superabrasive material, forming a green structure comprising the coated grains, and sintering the green structure. Other methods include mixing diamond grains with a catalyst and subjecting the mixture to a pressure greater than about five gigapascals (5.0 GPa) and a temperature greater than about 1,300° C. to form a polycrystalline diamond compact.
Abstract:
Removing an asphaltene particle from a substrate includes contacting a silicate nanoparticle with a chemical group to form a functionalized silicate nanoparticle, the chemical group includes a first portion; and a second portion comprising a nonaromatic moiety, the first portion being bonded to the silicate nanoparticle; contacting the asphaltene particle with the functionalized silicate nanoparticle, the asphaltene particle being disposed on the substrate; interposing the functionalized silicate nanoparticle between the asphaltene particle and the substrate; and separating the asphaltene particle from the substrate with the functionalized silicate nanoparticle to remove the asphaltene particle. A composition includes a functionalized silicate nanoparticle comprising a reaction product of a silicate nanoparticle and a functionalization compound; and a fluid. The functionalization compound includes a chemical group that includes a first portion, the first portion being directly bonded to the silicate nanoparticle in the functionalized silicate nanoparticle; and a second portion including an aromatic moiety or a nonaromatic moiety.
Abstract:
A method of obtaining a hydrocarbon material from a subterranean formation comprises forming a flooding suspension comprising degradable particles and a carrier fluid. The flooding suspension is introduced into a subterranean formation containing a hydrocarbon material to form an emulsion stabilized by the degradable particles and remove the emulsion from the subterranean formation. At least a portion of the degradable particles are degraded to destabilize the emulsion. An additional method of obtaining a hydrocarbon material from a subterranean formation, and a stabilized emulsion are also described.
Abstract:
Suspensions comprising polyhedral oligomeric silsesquioxane nanoparticles and at least one carrier fluid. The polyhedral oligomeric silsesquioxane may include functional groups and the suspension may further comprise carbon-based nanoparticles and silica nanoparticles. Related methods of recovering hydrocarbons from a subterranean formation using the suspension. The method comprises contacting hydrocarbons with the suspension to form an emulsion stabilized by the polyhedral oligomeric silsesquioxane nanoparticles.
Abstract:
A formulation for use as a lost circulation preventive material is a cement-forming aqueous fluid comprising water, at least one viscoelastic surfactant (VES), at least one monovalent or multivalent salt, at least one magnesium powder, and at least one retarder. The formulation is used in a method of drilling into a subterranean formation that includes introducing into a wellbore passing at least partially through the subterranean formation the cement-forming aqueous fluid, and further increasing the viscosity of the aqueous fluid by the action of the VES forming elongated micelles; where the at least one monovalent salt is present in an amount effective to pseudo-crosslink the elongated VES micelles to further increase the viscosity of the aqueous fluid. The formulation further forms a cement by reacting the at least one magnesium powder and the water which reaction is retarded by the retarder. The water may be saline water.
Abstract:
A system for high pressure proppant blending includes at least one high pressure pump coupled to a high pressure flow path, the high pressure flow path entering a wellhead. The system further includes a chamber storing a mixture of proppant and compressed gas. The system also includes a high pressure nozzle. An output of the high pressure nozzle is coupled to the high pressure flow path between the at least one high pressure pump and the wellhead. The chamber is coupled to an input of the high pressure nozzle.
Abstract:
Methods of fabricating polycrystalline diamond include subjecting a particle mixture to high pressure and high temperature (HPHT) conditions to form inter-granular diamond-to-diamond bonds. Before being subjected to HPHT conditions, the particle mixture includes a plurality of non-diamond nanoparticles, diamond nanoparticles, and diamond grit. The non-diamond nanoparticles includes carbon-free cores and at least one functional group attached to the cores. Cutting elements for use in an earth-boring tool include a polycrystalline diamond material formed by such processes. Earth-boring tools include such cutting elements.
Abstract:
Suspensions comprising polyhedral oligomeric silsesquioxane nanoparticles and at least one carrier fluid. The polyhedral oligomeric silsesquioxane may include functional groups and the suspension may further comprise carbon-based nanoparticles and silica nanoparticles. Methods of recovering hydrocarbons from a subterranean formation using the suspension are disclosed. The method comprises contacting hydrocarbons with the suspension to form an emulsion stabilized by the polyhedral oligomeric silsesquioxane nanoparticles.