Abstract:
Polyethylene composition with improved balance of impact resistance at low temperatures and Environmental Stress Cracking Resistance (ESCR), particularly suited for producing protective coatings on metal pipes, said composition having the following features: 1) density from 0.938 to 0.948 g/cm3; 2) ratio MIF/MIP from 15 to 25; 3) MIF from 30 to 45 g/10 min.; 4) Mz equal to or greater than 1000000 g/mol; 5) LCBI equal to or greater than 0.55.
Abstract:
Process for transferring polyolefin particles from a first gas-phase polymerization reactor to a second gas-phase polymerization reactor in a multistage polymerization of olefins carried out in at least two serially connected gas-phase polymerization reactors,wherein the first gas-phase reactor is a fluidized-bed reactor comprising a gas distribution grid and a settling pipe, which is integrated with its upper opening into the distribution grid and contains a bed of polyolefin particles which moves from top to bottom of the settling pipe, the process comprising the steps of introducing a fluid into the settling pipe in an amount that an upward stream of the fluid is induced in the bed of polyolefin particles above the fluid introduction point; withdrawing polyolefin particles from the lower end of the settling pipe; and transferring the withdrawn polyolefin particles into the second gas-phase polymerization reactor, process for polymerizing olefins comprising such a process for transferring polyolefin particles, reactor suitable as first gas-phase polymerization reactor in the process for polymerizing olefins and process for discharging polyolefin particles from a fluidized-bed reactor.
Abstract:
A polyethylene composition for producing blow-molded hollow articles, having the following features: 1) density from 0.940 to 0.955 g/cm3, determined according to ISO 1183 at 23° C.; 2) ratio MIF/MIP from 12 to 40; 3) Mz from 500,000 to 3,500,000 g/mol; 4) η0.02 from 80,000 to 300,000 Pa·s; 5) HMWcopo index from 1 to 15; and 6) Mz/Mw*LCBI lower than 6.4.
Abstract:
A polyethylene composition for producing blow-molded hollow articles, having the following features: 1) a density from 0.945 to 0.958 g/cm3, determined according to ISO 1183 at 23° C.; 2) a ratio MIF/MI10 from 2 to 10; 3) a η0.02 from 200,000 to 800,000 Pa·s; 4) a LCBI equal to or lower than 0.80; and 5) a ratio (η0.02/1000)/LCBI equal to or greater than 350.
Abstract:
Process for preparing an olefin polymer including the step of polymerizing an olefin in the presence of a polymerization catalyst and hydrogen as molecular weight regulator in a gas-phase polymerization reactor to yield growing polymer particles, the reactor including three or more polymerization zones and at least two thereof are sub-zones of a polymerization unit wherein the growing polymer particles flow downward in a densified form and at least one polymerization zone has a ratio of hydrogen to the sum of olefins which is a factor of at least 1.5 lower than the ratio of hydrogen to the sum of olefins in the polymerization zone having the highest ratio of hydrogen to the sum of olefins and a factor of at least 1.5 higher than the ratio of hydrogen to the sum of olefins in the polymerization zone having the lowest ratio of hydrogen to the sum of olefins.
Abstract:
A process for the preparation of polyolefins by polymerizing olefins at temperatures of from 20 to 200° C. and pressures of from 0.1 to 20 MPa in the presence of a polymerization catalyst and an antistatically acting composition in a polymerization reactor, wherein the antistatically acting composition is a mixture comprising an oil-soluble surfactant and water and the use of an antistatically acting composition comprising an oil-soluble surfactant and water as antistatic agent for the polymerization of olefins at temperatures of from 20 to 200° C. and pressures of from 0.1 to 20 MPa in the presence of a polymerization catalyst.
Abstract:
A process for the preparation of polyolefins by polymerizing olefins at temperatures of from 20 to 200° C. and pressures of from 0.1 to 20 MPa in the presence of a polymerization catalyst and an antistatically acting composition in a polymerization reactor, wherein the antistatically acting composition is a mixture comprising an oil-soluble surfactant and water and the use of an antistatically acting composition comprising an oil-soluble surfactant and water as antistatic agent for the polymerization of olefins at temperatures of from 20 to 200° C. and pressures of from 0.1 to 20 MPa in the presence of a polymerization catalyst.
Abstract:
Embodiments of the present disclosure relate to a method of preparing polyethylene compositions comprising polymerizing ethylene in a first gas-phase reactor and polymerizing ethylene in a second gas-phase reactor in the presence of hydrogen; wherein at least one of the first or second gas-phase reactors comprises a first and second polymerization zone; wherein a hydrogen pressure of the first and second polymerization zones are different such that at least a portion of the second ethylene cycles through the first and second polymerization zones and a gas mixture of each polymerization zone is partially or totally prevented from entering the other zone.
Abstract:
Process for transferring polyolefin particles from a first gas-phase polymerization reactor to a second gas-phase polymerization reactor in a multistage polymerization of olefins carried out in at least two serially connected gas-phase polymerization reactors,wherein the first gas-phase reactor is a fluidized-bed reactor comprising a gas distribution grid and a settling pipe, which is integrated with its upper opening into the distribution grid and contains a bed of polyolefin particles which moves from top to bottom of the settling pipe,the process comprising the steps ofintroducing a fluid into the settling pipe in an amount that an upward stream of the fluid is induced in the bed of polyolefin particles above the fluid introduction point;withdrawing polyolefin particles from the lower end of the settling pipe; andtransferring the withdrawn polyolefin particles into the second gas-phase polymerization reactor,process for polymerizing olefins comprising such a process for transferring polyolefin particles, reactor suitable as first gas-phase polymerization reactor in the process for polymerizing olefins and process for discharging polyolefin particles from a fluidized-bed reactor.