Abstract:
A process for starting a multizone circulating reactor containing no polyolefin particles, comprising the steps of conveying gas through the reactor and the gas recycle line, feeding a particulate material comprising a polymerization catalyst and optionally polyolefin into the reactor, controlling the gas flow in a vertical reactor zone equipped with a throttling valve at the bottom so that the upwards gas velocity in the bottom part of this reaction zone is lower than the terminal free-fall velocity of the particulate material fed into the reactor, and, after the weight of the particulate polyolefin in this reactor zone is higher than the drag force of the upward moving gas, controlling the circulation rate of the polymer particles within the multizone circulating reactor by adjusting the opening of the throttling valve and adjusting the flow rate of a dosing gas.
Abstract:
Process for preparing an olefin polymer including the step of polymerizing an olefin in the presence of a polymerization catalyst and hydrogen as molecular weight regulator in a gas-phase polymerization reactor to yield growing polymer particles, the reactor including three or more polymerization zones and at least two thereof are sub-zones of a polymerization unit wherein the growing polymer particles flow downward in a densified form and at least one polymerization zone has a ratio of hydrogen to the sum of olefins which is a factor of at least 1.5 lower than the ratio of hydrogen to the sum of olefins in the polymerization zone having the highest ratio of hydrogen to the sum of olefins and a factor of at least 1.5 higher than the ratio of hydrogen to the sum of olefins in the polymerization zone having the lowest ratio of hydrogen to the sum of olefins.
Abstract:
A process for the preparation of polyolefins by polymerizing olefins at temperatures of from 20 to 200° C. and pressures of from 0.1 to 20 MPa in the presence of a polymerization catalyst and an antistatically acting composition in a polymerization reactor, wherein the antistatically acting composition is a mixture comprising an oil-soluble surfactant and water and the use of an antistatically acting composition comprising an oil-soluble surfactant and water as antistatic agent for the polymerization of olefins at temperatures of from 20 to 200° C. and pressures of from 0.1 to 20 MPa in the presence of a polymerization catalyst.
Abstract:
A process for the gas-phase polymerization of ethylene or a mixture of ethylene and one or more 1 olefins in the presence of a polymerization catalyst system comprising the steps a) feeding a solid catalyst component, which was obtained by contacting at least a magnesium compound and a titanium compound, to a continuously operated apparatus and contacting the solid catalyst component with an aluminum alkyl compound at a temperature of from 0° C. to 70° C. in a way that the mean residence time of the solid catalyst component in contact with the aluminum alkyl compound is from 5 to 300 minutes; b) transferring the catalyst component formed in step a) into another continuously operated apparatus and prepolymerizing it with ethylene or a mixture of ethylene and one or more 1 olefins in suspension at a temperature of from 10° C. to 80° forming polymer in an amount of from 0.2 to 25 g polymer/g of solid catalyst component in a way that the mean residence time of the solid catalyst component in the apparatus is from 5 minutes to 3 hours; and c) transferring the prepolymerized catalyst component formed in step b) into a gas-phase polymerization reactor and polymerizing ethylene or a mixture of ethylene and one or more 1 olefins in the presence of the prepolymerized catalyst component at temperatures of from 40° C. to 120° C. and pressures of from 0.1 to 10 MPa.
Abstract:
A polyethylene composition having the following features:
1) a density from 0.957 to 0.968 g/cm3; 2) a ratio MIF/MIP from 12 to 30; 3) a MIF from 41 to 60 g/10 min.; 4) a long-chain branching index, LCBI, equal to or greater than 0.45; and 5) a ratio (η0.02/1000)/LCBI from 45 to 75.
Abstract:
A process for preparation of an ethylene polymer in a gas-phase polymerization unit comprising a gas-phase polymerization reactor by homopolymerizing ethylene or copolymerizing ethylene and one or more C4-C12-1-alkenes in a reaction gas made from or containing propane as polymerization diluent in the presence of a pre-activated polymerization catalyst, wherein a purified propane feed stream made from or containing at least 99 mol % propane and from 0.1 to 100 ppm mol propylene is fed to the gas-phase polymerization unit.
Abstract:
A process for preparing an olefin polymer in a polymerization apparatus in the presence of a solid particulate polymerization catalyst and an organometallic compound, including the steps of withdrawing a gaseous stream from the polymerization apparatus, passing the gaseous stream through a bed of particulate solid having, at the surface of the particulate solid, chemical groups which are reactive with the organometallic compound, and feeding a sample of the gaseous stream into an analyzer.
Abstract:
A polyethylene composition particularly suited for producing blow-molded hollow articles, having the following features:
1) density from more than 0.955 to 0.965 g/cm3; 2) ratio MIF/MIE from 60 to 125; 3) MIF from 15 to 40 g/10 min.; 4) ER values from 3.0 to 5.5; 5) 110.02 equal to or lower than 150,000 Pa·s.
Abstract:
A polyethylene composition for producing blown films, made from or containing an ethylene homopolymer or copolymer A) and an ethylene copolymer B) having a MIE value lower than the MIE value of A), the composition having the following features:
1) density from 0.948 to 0.960 g/cm3; 2) ratio MIF/MIP from 20 to 40; 3) MIF from 6 to less than 15 g/10 min.; 4) HMWcopo index from 0.5 to 3.5; 5) long-chain branching index, LCBI, equal to or lower than 0.82; 6) η0.02 of equal to or less than 150000.