Abstract:
A manufacturing method of the light guide plates, a light guide plate made by the method and a double-side display device comprising the light guide plate. The manufacturing method of a light guide plate comprises: forming a plurality of alternating first grooves (101) and second grooves (102) on a surface of a transparent substrate (100); forming a first reflective layer (300) on a surface of the first groove (101); and forming a transparent protective layer (500) on the entire surface of the substrate. According to the present disclosure, a light guide plate is provided that can be used in the double-side display device.
Abstract:
This invention provides an array substrate, a method for fabricating the same, and an OLED display device, which can solve the technical problem that the existing OLED display device has low luminous efficiency. Each pixel unit of the array substrate comprises: a TFT drive layer; an OLED further away from the substrate than the TFT drive layer and driven by it, the OLED sequentially comprises a first electrode, a light emitting layer, and a transparent second electrode, wherein the first electrode is a reflection layer, or the first electrode is transparent and has a reflection layer disposed thereunder; a transflective layer further away from the substrate than the OLED and forming a microcavity structure with the reflection layer; and a color filter film disposed between the OLED and the transflective layer and located in the microcavity structure. The present invention is particularly suitable for a WOLED display device.
Abstract:
The present invention provides an open-type head mount display device and a display method thereof. The open-type head mount display device according to the present invention comprises a display unit for generating display images; a focusing lens unit for adjusting the object distance of a display image from a user's eye; an image acquisition unit for acquiring the image of the two eyes of the user; a focal distance analyzing unit for obtaining the focal distance of the user's eye according to the image of the two eyes of the user; and a lens adjusting unit for adjusting the position of the focusing lens unit in the light ray propagation direction of the display image according to a control command from the analyzing unit, so that the object distance of the display image is matched with the current focal distance of the user's eye.
Abstract:
The embodiments of the invention disclose a scanning type backlight module and a display device. Since a laser light source with good collimation is applied, during a display time of a frame, with the modulation of the optical path regulator, the laser emitted from the laser light source performs a progressive scanning for a region corresponding to at least one row of pixel units in a light guide plate or a display panel. Therefore, the problem of dynamic picture ghosting can be solved effectively; moreover, since the progressive scanning for the entire light guide plate can be realized by changing the light propagation path of the laser emitted from the laser light source with the optical path regulator, the number of the laser light sources can be reduced and the production cost can be decreased.
Abstract:
An array substrate and a manufacturing method thereof as well as a display device are disclosed. The array substrate includes a gate (21) and a gate insulating layers (22) of TFT formed in this order on a surface of a base substrate (20); a semiconductor active layer (23), an etching stop layer (24), and a source (251)/drain (252) of the TFT formed in this order on a surface of the gate insulating layer (22) corresponding to the gate (21) of the TFT. The source (251) and drain (252) of the TFT contact the semiconductor active layer (23) through respective vias. The array substrate further includes: a shielding electrode (26) formed between the gate (21) of the TFT and the base substrate (20); and an insulating layer (27) formed between the gate (21) of the TFT and the shielding electrode (26). In a region where the gate (21) faces the source (251), the area of the gate (210) is smaller than that of the source (251); and/or in a region where the gate (21) faces the drain (252), the area of the gate (210) is smaller than that of the drain (252). The array substrate according to embodiments of the present invention reduces the parasitic capacitance between the source/drain and the gate of the TFT and improves the quality of a display device.
Abstract:
A method of manufacturing a light guiding plate comprises steps of forming a protrusion array composed of a plurality of protrusions (300) on a surface of a substrate (100); and forming reflective layers (301) on side facets of the protrusions (300) respectively, in such a way that, the farther away from a side of the substrate (100) the protrusion (300) with the reflective layer is, the greater the reflectivity of the reflective layer (301) is. The light emitted from the light guiding plate made by the method is relatively uniform, and the heating issue is also avoided.
Abstract:
Embodiments of the present invention disclose a pixel unit, an array substrate, a liquid crystal panel, a display device and a manufacturing method thereof. The pixel unit comprises a thin film transistor, a pixel electrode and a common electrode, the thin film transistor comprising a gate electrode, a gate insulating layer provided on the gate electrode, an active layer provided on the gate insulating layer, a source electrode and a drain electrode provided on the active layer, and a passivation layer provided on the source electrode and the drain electrode; wherein the common electrode is provided directly on the passivation layer; and the pixel electrode is provided under the passivation layer and is connected to the drain electrode of the thin film transistor. For the array substrate, the liquid crystal panel, the display device and the manufacturing method thereof, it is possible to increase view angles, lower power consumption, and increase aperture ratio, thereby improving display quality.
Abstract:
An array substrate, a manufacturing method thereof, and a display device are provided. The array substrate comprise a base substrate (11), a gate line, a data line, and a pixel region defined by intersection of the gate line and the data line, which are formed on the base substrate (11), wherein the pixel region comprises a thin film transistor, and the thin film transistor comprises a gate, a gate insulation layer, an active layer, a source and a drain, the pixel region further comprise: at least one groove (110), formed on a surface of the base substrate (11); a first electrode layer (12) comprising at least one first electrode bar (120), the first electrode bars (120) are disposed in the groove (110) and electrically connected with each other; and a second electrode layer (13) comprising at least one second electrode bar (130), wherein the second electrode bars (130) are disposed outside the groove (110) and electrically connected with each other. No overlapping between the common electrode and the pixel electrode can be achieved, so as to improve display quality of the display device.
Abstract:
A pixel circuit includes a driving circuit, configured to drive a light-emitting element to emit light; a compensation control circuit, electrically connected to a first gate line and configured to control a control terminal of the driving circuit to be connected with a second terminal of the driving circuit under the control of a first gate drive signal provided by the first gate line; and a data writing circuit, electrically connected to a second gate line and configured to control a data voltage to be provided to a first terminal of the driving circuit under the control of a second gate drive signal provided by the second gate line. A voltage value of the first gate drive signal is substantially different from a voltage value of the second gate drive signal.
Abstract:
Disclosed is an array substrate and a display device. The array substrate includes: a plurality of gate lines and a plurality of data lines formed on a base substrate, and a plurality of pixel units defined by the plurality of gate lines and the plurality of data lines intersecting each other, wherein each pixel unit includes a thin film transistor and a pixel electrode connected with the thin film transistor, the pixel electrode, the data line, as well as an active layer, a source and a drain of the thin film transistor are disposed in a same layer and are formed through a single patterning process.