Abstract:
An intravenous delivery system may have a liquid source containing a liquid, tubing, and an anti-run-dry membrane positioned such that the liquid, flowing form the liquid source to the tubing, passes through the anti-run-dry membrane. The anti-run-dry membrane may be positioned within an exterior wall of a drip unit, and may be secured to a seat of the exterior wall by an attachment component. The attachment component may have various forms, such as a secondary exterior wall that cooperates with the exterior wall to define a drip chamber, a washer positioned such that the anti-run-dry membrane is between the washer and the seat, and an adhesive ring formed of a pressure sensitive adhesive and secured to the anti-run-dry membrane and the seat via compression. Interference features may protrude inward from the exterior wall or outward from the anti-run-dry membrane to help keep the anti-run-dry membrane in place.
Abstract:
A device to couple a vascular access device to a medical device may include a body, a spring, and a housing. The body may include a distal end, a proximal end, and a lumen extending through the distal end and the proximal end. The proximal end of the body may include a connector. The housing may be coupled to a proximal end of the spring and may enclose the connector. A distal end of the spring may be coupled to the body. The housing may include a flap, which may include an antimicrobial compound. When the housing is disposed in a proximal position, the flap may cover the connector, the antimicrobial compound may contact the connector, and the spring may be uncompressed. In response to movement of the housing from the proximal position to a distal position, the spring may be compressed and the flap may open.
Abstract:
A device to couple a vascular access device to a medical device may include a body, a spring, and a housing. The body may include a distal end, a proximal end, and a lumen extending through the distal end and the proximal end. The proximal end of the body may include a connector. The housing may be coupled to a proximal end of the spring and may enclose the connector. A distal end of the spring may be coupled to the body. The housing may include a flap, which may include an antimicrobial compound. When the housing is disposed in a proximal position, the flap may cover the connector, the antimicrobial compound may contact the connector, and the spring may be uncompressed. In response to movement of the housing from the proximal position to a distal position, the spring may be compressed and the flap may open.
Abstract:
An intravenous delivery system may have a liquid source containing a liquid, tubing, and an anti-run-dry membrane positioned such that the liquid, flowing form the liquid source to the tubing, passes through the anti-run-dry membrane. The anti-run-dry membrane may have a plurality of pores through which the liquid flows, and may be formed of a hydrophilic material that resists passage of air through the pores. The intravenous delivery system may further have a bubble point raising component that raises the bubble point of the anti-run-dry membrane. The bubble point raising component may, in some embodiments, be a high surface energy coating or additive.
Abstract:
An intravenous delivery system may have a liquid source containing a liquid, tubing, and an anti-run-dry membrane positioned such that the liquid, flowing form the liquid source to the tubing, passes through the anti-run-dry membrane. The anti-run-dry membrane may have a plurality of pores through which the liquid flows, and may be formed of a hydrophilic material that resists passage of air through the pores. The intravenous delivery system may further have a bubble point raising component that raises the bubble point of the anti-run-dry membrane. The bubble point raising component may, in some embodiments, be a high surface energy coating or additive.
Abstract:
An intravenous (IV) catheter system may include a catheter adapter having a proximal end and a distal end. The IV catheter system may also include a cannula extending through the catheter adapter. A proximal end of the cannula may include a notch. The IV catheter system may also include a needle hub, which may be coupled to the proximal end of the catheter adapter. The needle hub may include a flashback chamber, which may be in fluid communication with the notch when the IV catheter system is in an insertion configuration.
Abstract:
An air stop membrane can be used within an IV set to maintain a fluid column within the IV set downstream of the membrane even after a fluid bag has emptied. By maintaining a fluid column downstream of the membrane, air is prevented from entering into the tubing that couples the IV set to a vascular access device. For this reason, once a fluid bag has emptied, a new fluid bag can be coupled to the IV set without needing to re-prime the IV set. Therefore, a clinician need not be present as a fluid bag is emptying to ensure that air does not enter the tubing.
Abstract:
Pinch clamps are provided which generate positive displacement while also preventing rebound. To prevent rebound while providing positive displacement, the upper and lower clamping surfaces may be configured to form a pinch profile along which the tubing is compressed with the pinch point being formed at the distal end of the pinch profile. To further prevent rebound, the lower arm of the pinch clamp can include blocking ribs that interface with the upper clamping surface to prevent distal travelling of the pinch point even if the upper arm is forced into an over-engaged position.