Abstract:
This provides for controlling mobile device functions and features, along with systems incorporating these devices and methods. For example, it limits or disables the use of some of mobile device features which could cause distraction to the user, when the user is engaged in another activity. In an example, it enables other mobile device features based on occurrence of events related to the user or environment. Another example addresses controlling the mobile device features, such as SMS, while the user is in a vehicle or driving. Another example restricts the ability of the driver of a vehicle to text, while the vehicle is in motion, by automatically disabling the texting ability of mobile device within and around the perimeter of the driver's seat. Other variations, examples, improvements, detection mechanisms, models, techniques, calculations, verification mechanisms, and features are also described in details.
Abstract:
This provides for controlling mobile device functions and features. For example, it limits or disables the use of some of mobile device features which could cause distraction to the user, when the user is engaged in another activity. In an example, it enables other mobile device features based on occurrence of events related to the user or environment. Another example addresses controlling the mobile device features, such as SMS, while the user is in a vehicle or driving. Another example restricts the ability of the driver of a vehicle to text, while the vehicle is in motion, by automatically disabling the texting ability of mobile device within and around the perimeter of the driver's seat. Other variations, examples, improvements, detection mechanisms, models, techniques, calculations, verification mechanisms, and features are also described in details.
Abstract:
The solar energy and solar farms are used to generate energy and reduce dependence on oil (or for environmental purposes). The maintenance, operation, optimization, and repairs in big farms become very difficult, expensive, and inefficient, using human technicians. Thus, here, we teach using the robots with various functions and components, in various settings, for various purposes, to improve operations in big (or hard-to-access) farms, to automate, save money, reduce human mistakes, increase efficiency, or scale the solutions to very large scales or areas, e.g., for repair, operation, calibration, testing, maintenance, adjustment, cleaning, improving the efficiency, and tracking the Sun.
Abstract:
The solar energy and solar farms are used to generate energy and reduce dependence on oil (or for environmental purposes). The maintenance, operation, optimization, and repairs in big farms become very difficult, expensive, and inefficient, using human technicians. Thus, here, we teach using the robots with various functions and components, in various settings, for various purposes, to improve operations in big (or hard-to-access) farms, to automate, save money, reduce human mistakes, increase efficiency, or scale the solutions to very large scales or areas, e.g., for repair, operation, calibration, testing, maintenance, adjustment, cleaning, improving the efficiency, and tracking the Sun.
Abstract:
The solar energy and solar farms are used to generate energy and reduce dependence on oil (or for environmental purposes). The maintenance, operation, optimization, and repairs in big farms become very difficult, expensive, and inefficient, using human technicians. Thus, here, we teach using the robots with various functions and components, in various settings, for various purposes, to improve operations in big (or hard-to-access) farms, to automate, save money, reduce human mistakes, increase efficiency, or scale the solutions to very large scales or areas, e.g., for repair, operation, calibration, testing, maintenance, adjustment, cleaning, improving the efficiency, and tracking the Sun.
Abstract:
This provides for controlling mobile device functions and features. For example, it limits or disables the use of some of mobile device features which could cause distraction to the user, when the user is engaged in another activity. In an example, it enables other mobile device features based on occurrence of events related to the user or environment. Another example addresses controlling the mobile device features, such as SMS, while the user is in a vehicle or driving. Another example restricts the ability of the driver of a vehicle to text, while the vehicle is in motion, by automatically disabling the texting ability of mobile device within and around the perimeter of the driver's seat. Other variations, examples, improvements, detection mechanisms, models, techniques, calculations, verification mechanisms, and features are also described in details.
Abstract:
This provides for controlling mobile device functions and features. For example, it limits or disables the use of some of mobile device features which could cause distraction to the user, when the user is engaged in another activity. In an example, it enables other mobile device features based on occurrence of events related to the user or environment. Another example addresses controlling the mobile device features, such as SMS, while the user is in a vehicle or driving. Another example restricts the ability of the driver of a vehicle to text, while the vehicle is in motion, by automatically disabling the texting ability of mobile device within and around the perimeter of the driver's seat. Other variations, examples, improvements, detection mechanisms, models, techniques, calculations, verification mechanisms, and features are also described in details.
Abstract:
Here, we have the following examples: (1) Integrating the NID functionality in to the small foot-print of an SFP Module, with one or more of the features below: a) Mounting a NID SoC IC to an existing SFP Printed Circuit Board (PCB); b) Using the power from the SFP module, without requiring separate external power; c) NID SoC having only 2 ports, each with its own MAC and possibly PHY layer; d) NID SoC having an embedded microprocessor, RAM and ROM; e) Running a Web portal or other remote login and management software on the NID SoC; f) Miniaturizing the NID to make it cheaper, with reduced cost of inventory, shipment, and installation; and/or g) Supporting one or more (multiple of/ many) functions in NID SoC, e.g., OAM or Shaping. (2) Building the NID functionality in a Dongle. Many other examples, configurations, applications, and variations are provided.
Abstract:
In one example, we describe a method of construction and assembly for a very large wind power generator (or windmill or wind turbine unit), for sea, coast line, or in-land installment. In other examples, we describe the improvements on components of a wind power generator (or windmill or wind turbine unit). In one example, we describe a method of avoiding or minimizing problems with the weather forecasts or military radar interferences, for large wind mills or wind farms.
Abstract:
In this presentation, we have shown new methods, devices, and systems, to concentrate the light for the solar cells, using refractive index variations, light funnels, liquid crystals, and other methods and materials. We have shown various methods for enhancing the solar cell efficiency. We have given many variations for each application.