Abstract:
The present invention provides preferred, preferably liquid, hard surface cleaning compositions, compositions with cleaning liquid composition on a substrate, compositions used with absorbent pads and implements and devices for making the process of cleaning hard surfaces and/or maintaining their appearance and hygiene easier and more effective. These compositions, along with specific instructions for use are advantageous for removal of and/or prevention of buildup of soils commonly encountered on floors, glass surfaces, counters, walls, showers and/or tubs, said compositions comprising hydrophilic polymers to render the cleaned surface hydrophilic and to improve the appearance when the surface is either not rinsed, or when the composition is incompletely removed, specific surfactant, preferably surfactant selected to minimize spotting/filming, optionally specific organic cleaning solvents to provide cleaning and wetting particularly in applications where levels of non-volatiles need to be minimized, and, optionally, anti-bacterial agents for preserving or surface activity and optionally perfumes for aesthetics.
Abstract:
Clear or translucent rinse-added fabric softening compositions are provided via the present invention which have reduced solvent or solvatrope levels.
Abstract:
A fabric conditioning article for use in a clothes dryer. The fabric conditioning article having a flexible sheet and a fabric conditioning composition deposited on the sheet. The fabric conditioning composition includes a fabric conditioning agent, perfumed particles and minor components. The perfume particles are a perfume composition incorporated into a porous mineral carrier such as clay and/or zeolite. Optionally, the perfume composition comprises low levels of unstable perfume components. Alternatively, the perfumed particles have a coating material encapsulating at least a portion of the particles. Optionally, the articles are packaged in a container having a moisture barrier to prevent premature release of the perfume therefrom.
Abstract:
The present invention relates to aqueous stable, preferably concentrated, aqueous liquid textile softening compositions comprising fabric softener active and cationic polymer in the continuous aqueous phase to provide improved softening. The compositions of the present invention preferably contain diester quaternary ammonium compounds wherein the fatty acyl groups have an Iodine Value of from greater than about 5 to less than about 140. The cationic polymers can provide additional benefits such as dye transfer inhibition, chlorine scavenging to protect fabrics, cotton soil release benefits, etc.
Abstract:
A fabric conditioning article for use in a clothes dryer. The fabric conditioning article having a flexible sheet and a fabric conditioning composition deposited on the sheet. The fabric conditioning composition includes a fabric conditioning agent, perfumed particles and minor components. The perfume particles are a perfume composition incorporated into a porous mineral carrier such as clay and/or zeolite. Optionally, the perfume composition comprises low levels of unstable perfume components. Alternatively, the perfumed particles have a coating material encapsulating at least a portion of the particles. Optionally, the articles are packaged in a container having a moisture barrier to prevent premature release of the perfume therefrom.
Abstract:
The present invention relates to a stable, aqueous odor-absorbing composition, preferably for use on inanimate surfaces. The composition comprises from about 0.1% to about 0.5%, by weight of the composition, of an emulsion or dispersion comprising long lasting hydrophobic perfume to improve acceptance. Optionally, the composition can contain low molecular weight polyols; metallic salts to help control odor; water soluble anionic polymer to help control odor; a humectant, etc. The composition is preferably essentially free of any material that would soil or stain fabric. The composition is preferably applied as small particle size droplets, especially from spray containers.
Abstract:
The present invention relates to a method of removing malodor from fabrics; stable, aqueous odor-counteractant composition, preferably for use in the laundry; and articles comprising said composition and instructions for the method and/or benefits to be derived. The composition comprises malodor counteractants such as cyclodextrin, said cyclodextrin being protected from interaction with any other materials that might be present in said composition so as to maintain the cyclodextrin in uncomplexed form and/or, optionally, zeolites, clay, odor blockers, odor reactant such as class I and/or class II aldehydes, essential oil comprising flavanoid, metallic salt, water soluble anionic polymer, etc. to help control odor. Optionally, the composition can also contain low molecular weight polyols, chelating agents, etc. The composition is preferably essentially free of any material that would soil or stain fabric.
Abstract:
Polymer compositions, while providing suitable wrinkle control, also tend to dispense poorly when sprayed. The present invention shows that when viscosity of polymer compositions is minimized spray dispensing improves. Several approaches to minimizing the viscosity of polymer compositions are disclosed. Methods of controlling wrinkles in fabrics comprise treating fabrics with a variety of polymer compositions following a variety of methods. Articles of manufacture comprise (1) a container or substrate, (2) a wrinkle controlling composition, and (3) a set of instructions.
Abstract:
The present invention relates to aqueous stable, preferably concentrated, aqueous liquid textile softening compositions comprising fabric softener active and cationic polymer in the continuous aqueous phase to provide improved softening. The compositions of the present invention preferably contain diester quaternary ammonium compounds wherein the fatty acyl groups have an Iodine Value of from greater than about 5 to less than about 140. The cationic polymers can provide additional benefits such as dye transfer inhibition, chlorine scavenging to protect fabrics, cotton soil release benefits, etc.