Abstract:
A spool for a spool valve assembly defines a spool longitudinal axis and includes a first land module defining a first land module circumferential surface, a second land module defining a second land module circumferential surface, and a first metering module. The first metering module has a first end cap and a second end cap. The first end cap is coupled to the first land module, and the second end cap is coupled to the second land module, to form the spool. The first metering module may further include at least two pillars extending from the first end cap to the second end cap, wherein the at least two pillars are entirely disposed within a virtual first metering module hollow cylinder area that surrounds a virtual first metering module central core area concentric with the spool longitudinal axis.
Abstract:
An injector for a diesel exhaust fluid (DEF) delivery system includes a first conduit extending along a longitudinal direction; a second conduit extending along the longitudinal direction and disposed within the first conduit; a nozzle tip having a side wall and an end wall; and a shell surrounding the first conduit and being spaced apart from the first conduit along a radial direction. The side wall has a thickness extending along the radial direction from an external surface of the nozzle tip to an inner surface of the second conduit. The end wall defines an outlet flow passage therethrough, and the outlet flow passage is in fluid communication with the first conduit and the second conduit via a chamber defined by an internal surface of the nozzle tip.
Abstract:
An additive manufacturing method for a part includes forming a pillar by fusing metallic material to form a hollow body portion including a wall having an inner surface and an outer surface and fusing metallic material to form a cap portion extending from a distal end of the body portion. The method includes forming the pillar by fusing metallic material to form a distal portion supported on the cap portion, supporting at least a portion of the part by the pillar, and removing the pillar from the part.
Abstract:
An injection apparatus includes an injection mixing platform located within an exhaust pipe; wherein the injection mixing platform includes two or more mixing blades extending radially from a common central hub, at least one of the mixing blades being coupled to a DEF inlet to receive DEF from an external tank, wherein each of the two or more mixing blades includes at least one nozzle to eject the DEF into an exhaust stream, the two or more mixing blades being statically mounted to an inner surface of the exhaust pipe.
Abstract:
A nozzle including a first channel, a second channel annularly disposed around the first channel, and a plurality of third channels fluidly connected to the second channel. The nozzle includes an interior cavity having a first inlet fluidly connected to the first channel and a plurality of second inlets. Individual second inlets of the plurality of second inlets fluidly connect to individual third channels of the plurality of third channels. The interior cavity includes an outlet and an impinging surface located opposite the first inlet.
Abstract:
A snap ring assembly is provided. The snap ring assembly includes a base set. The base set includes a first base section and a second base section. The first base section is adapted to be disposed adjacent and substantially coplanar with respect to the second base section. The snap ring assembly also includes a retaining set. The retaining set includes a first retaining section and a second retaining section. The first retaining section is adapted to be disposed adjacent and substantially coplanar with respect to the second retaining section. Each of the first retaining section and the second retaining section is adapted to be removably coupled to each of the first base section and the second base section.
Abstract:
A non-pneumatic tire may include a hub configured to be coupled to a machine, with the hub having a rotational axis about which the tire is configured to roll. The tire may also include a support structure including an inner circumferential portion associated with the hub and an outer circumferential portion radially spaced from the inner circumferential portion. The support structure may extend between opposed, axially-spaced side edges of the tire, and the support structure may include a plurality of cavities. The tire may also include a tread portion associated with the outer circumferential portion. The support structure may also include a plurality of layers of elastomeric material each having opposing faces lying in opposing planes substantially perpendicular to the rotational axis. At least some of the layers may include apertures corresponding to the cavities, and the layers may be chemically bonded to one another.
Abstract:
A system for molding a non-pneumatic tire may include a lower mold portion including a lower face plate configured to provide a lower relief corresponding to a first side of the tire. The system may further include an upper mold portion configured to be coupled to the lower mold portion. The upper mold portion may include an upper face plate configured to provide an upper relief corresponding to a second side of the tire. The system may also include a plurality of mold inserts configured to be positioned between the lower and upper face plates. The mold inserts may include a shell portion at least partially enclosing a void configured to provide a cavity in the tire, and the shell portion of the mold inserts is configured to remain embedded in the tire upon removal of the tire from the lower and upper mold portions.
Abstract:
A cutter system configured to sever elastomeric material of a non-pneumatic tire may include a cutter including a mounting fixture and a blade coupled to the mounting fixture. The cutter system may further include a driver assembly operably coupled to the mounting fixture of the cutter. The driver assembly may include a support member, and a cross-member operably coupled to the mounting fixture and the support member. The driver assembly may further include a first actuator operably coupled to the cross-member and the mounting fixture of the cutter, wherein the first actuator is configured to rotate the mounting fixture of the cutter relative to the cross-member. The driver assembly may further include a second actuator operably coupled to the cross-member and the support member, wherein the second actuator is configured to move the cross-member, such that the cutter reciprocates along a first axis relative to the support member.
Abstract:
A molded tire may include a support structure having an inner circumferential portion and an outer circumferential portion. The inner circumferential portion may be configured to be associated with a hub. The molded tire may also include a tread portion associated with the outer circumferential portion of the support structure, wherein the tread portion may be formed from a first polyurethane having first material characteristics. The support structure may be formed from a second polyurethane having second material characteristics different than the first material characteristics. The support structure may be chemically bonded to the tread portion.