Abstract:
A method of guiding deposition of a material to form a Three Dimensional (3D) structure is disclosed. The method includes generating a tool path based on a digital model of the 3D structure via a controller and communicating the tool path to a guiding device. The method further includes generating a guiding path on a work surface via the guiding device based on the tool path and depositing the material along the guiding path via a tool member.
Abstract:
A method of forming a three-dimensional article includes sequentially forming a plurality of first two-dimensional layers and a second two-dimensional layer. The second two-dimensional layer includes a second outer edge and a second inner area within the boundary defined by the second outer edge. The second inner area includes uniform physical characteristic and a watermark area within the second inner area having a physical characteristic different from that of the second inner area. An article includes a body with an inner area having a physical characteristic. A watermark is within the inner area and has a physical characteristic different from the physical characteristic of the inner area.
Abstract:
A method for three dimensional printing of a large sized object is provided. The method includes creating a three dimensional model associated with the object to be printed and analyzing a geometry of the three dimensional model. The method also includes placing seams on a deflated support member to form pathways on the support member such that the pathways are formed based on the analyzed geometry of the three dimensional model. The method further includes introducing a pressurized fluid into the pathways and further inflating the support member to conform to the analyzed geometry. The inflation is done to a predetermined pressurized geometry associated with the support member. The method also includes supporting the three dimensional printing of the object by the inflated support member. The inflated support member is configured to prevent at least one of an overhanging or a collapse of materials of the object prior to solidification.
Abstract:
A molded tire may include a support structure having an inner circumferential portion and an outer circumferential portion. The inner circumferential portion may be configured to be associated with a hub. The molded tire may also include a tread portion associated with the outer circumferential portion of the support structure, wherein the tread portion may be formed from a first polyurethane having first material characteristics. The support structure may be formed from a second polyurethane having second material characteristics different than the first material characteristics. The support structure may be chemically bonded to the tread portion.
Abstract:
A method of forming a three-dimensional article includes sequentially forming a plurality of first two-dimensional layers and a second two-dimensional layer. The second two-dimensional layer includes a second outer edge and a second inner area within the boundary defined by the second outer edge. The second inner area includes uniform physical characteristic and a watermark area within the second inner area having a physical characteristic different from that of the second inner area. An article includes a body with an inner area having a physical characteristic. A watermark is within the inner area and has a physical characteristic different from the physical characteristic of the inner area.
Abstract:
A structure is provided. The structure includes a first component disposed in the first plane. The structure also includes a second component extending from the first component and disposed in a second plane. The second plane is inclined at an angle with respect to the first plane. Each of the first component and the second component are constructed by forming layers parallel to each other using an additive manufacturing process.
Abstract:
A non-pneumatic tire may include a support structure having an inner circumferential portion configured to be associated with a hub. The tire may further include a tread portion associated with an outer circumferential portion of the support structure. The tire may also include at least one sensor associated with at least one of the support structure and the tread portion and configured to generate signals indicative of at least one characteristic associated with at least one of the support structure and the tread portion. The tire may further include a receiver associated with at least one of the support structure and the tread portion and configured to receive signals from the at least one sensor. The tire may also include a transmitter associated with at least one of the support structure and the tread portion and configured to transmit the signals to a location remote from the tire.
Abstract:
A non-pneumatic tire may include a hub configured to be coupled to a machine, with the hub having a rotational axis about which the tire is configured to roll. The tire may also include a support structure including an inner circumferential portion associated with the hub and an outer circumferential portion radially spaced from the inner circumferential portion. The support structure may extend between opposed, axially-spaced side edges of the tire, and the support structure may include a plurality of cavities. The tire may also include a tread portion associated with the outer circumferential portion. The support structure may also include a plurality of layers of elastomeric material each having opposing faces lying in opposing planes substantially perpendicular to the rotational axis. At least some of the layers may include apertures corresponding to the cavities, and the layers may be chemically bonded to one another.
Abstract:
A method of forming a three-dimensional article includes sequentially forming a plurality of first two-dimensional layers and a second two-dimensional layer. The second two-dimensional layer includes a second outer edge and a second inner area within the boundary defined by the second outer edge. The second inner area includes uniform physical characteristic and a watermark area within the second inner area having a physical characteristic different from that of the second inner area. An article includes a body with an inner area having a physical characteristic. A watermark is within the inner area and has a physical characteristic different from the physical characteristic of the inner area.
Abstract:
A method of forming a three-dimensional article includes sequentially forming a plurality of first two-dimensional layers and a second two-dimensional layer. The second two-dimensional layer includes a second outer edge and a second inner area within the boundary defined by the second outer edge. The second inner area includes uniform physical characteristic and a watermark area within the second inner area having a physical characteristic different from that of the second inner area. An article includes a body with an inner area having a physical characteristic. A watermark is within the inner area and has a physical characteristic different from the physical characteristic of the inner area.