Abstract:
A method of preparing a medium-density polyethylene pipe comprising melting a multimodal metallocene-catalyzed polyethylene resin to form a molten polyethylene, wherein the multimodal metallocene-catalyzed polyethylene resin has a density of from about 0.925 g/ml to about 0.942 g/ml, a magnitude of slip-stick greater than about 300 psi, a stress for smooth to matte transition of greater than about 90 kPa of stress, and a shear rate for smooth to matte transition greater than about 10 s−1, wherein the magnitude of slip-stick, stress for smooth to matte transition, and shear rate for smooth to matte transition are determined by a capillary rheology test; and forming the molten polyethylene resin into pipe. A pipe prepared from a multimodal metallocene-catalyzed polyethylene resin having a density of from about 0.925 g/ml to about 0.942 g/ml, a magnitude of slip-stick greater than about 300 psi; a stress for smooth to matte transition of greater than about 90 kPa, and a shear rate for smooth to matte transition greater than about 10 s−1, wherein the magnitude of slip-stick, stress for smooth to matte transition, and shear rate for smooth to matte transition are determined by a capillary rheology test.
Abstract:
Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes use a catalyst system containing three metallocene components, often resulting in polymers having a reverse comonomer distribution and a broad and non-bimodal molecular weight distribution.
Abstract:
Methods for controlling the long chain branch content of ethylene homopolymers and copolymers produced in a polymerization process include the steps of contacting a metallocene compound, an organoaluminum compound, a high LCB activator-support, and a low LCB activator-support to form a catalyst composition, contacting the catalyst composition with ethylene and an optional olefin comonomer in a polymerization reactor system under polymerization conditions to produce an ethylene polymer having a LCB content, and controlling the relative amount of the high LCB activator-support and the low LCB activator-support in the catalyst composition to adjust the LCB content of the ethylene polymer.
Abstract:
Disclosed herein are ethylene-based polymers generally characterized by a melt index of less than 1 g/10 min, a density from 0.93 to 0.965 g/cm3, a CY-a parameter at 190° C. of less than 0.2, an average number of short chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 40,000 to 60,000 g/mol, and an average number of long chain branches per 1000 total carbon atoms of the polymer in a molecular weight range of 400,000 to 600,000 g/mol that is greater than that in a molecular weight range of 4,000,000 to 6,000,000 g/mol. The ethylene polymers can be used to fabricate pipes, blown films, and blow molded products, and the ethylene polymers can be produced with a dual catalyst system containing a single atom bridged or two carbon atom bridged metallocene compound with two indenyl groups or an indenyl group and a cyclopentadienyl group, and a single atom bridged metallocene compound with a fluorenyl group and a cyclopentadienyl group with an alkenyl substituent.
Abstract:
Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3, a ratio of HLMI/MI from 185 to 550, an IB parameter from 1.46 to 1.80, a tan δ at 0.1 sec−1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec−1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
Abstract:
Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3, a ratio of HLMI/MI from 185 to 550, an IB parameter from 1.46 to 1.80, a tan δ at 0.1 sec−1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec−1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
Abstract:
Ethylene-based polymers are generally characterized by a high load melt index of less than 12 g/10 min, a weight-average molecular weight from 200,000 to 550,000 g/mol, a number-average molecular weight from 18,000 to 48,000 g/mol, a CY-a parameter of less than 0.12, a tan δ at 0.1 sec−1 from 0.5 to 0.9 degrees, a tan δ at 100 sec−1 from 0.5 to 0.75 degrees, and a viscosity at 0.001 sec−1 from 1.3×106 to 1×107 Pa-sec. These ethylene polymers can be produced by peroxide-treating a bimodal molecular weight distribution dual metallocene-catalyzed resin, and can be used to produce blow molded bottles and other blow molded products.
Abstract:
Ethylene-based polymers having a density of 0.952 to 0.968 g/cm3, a ratio of HLMI/MI from 185 to 550, an IB parameter from 1.46 to 1.80, a tan δ at 0.1 sec−1 from 1.05 to 1.75 degrees, and a slope of a plot of viscosity versus shear rate at 100 sec−1 from 0.18 to 0.28 are described, with low melt flow versions having a HLMI from 10 to 30 g/10 min and a Mw from 250,000 to 450,000 g/mol, and high melt flow versions having a HLMI from 30 to 55 g/10 min and a Mw from 200,000 to 300,000 g/mol. These polymers have the processability of chromium-based resins, but with improved stress crack resistance and topload strength for bottles and other blow molded products.
Abstract:
Ethylene-based polymers are generally characterized by a high load melt index of less than 12 g/10 min, a weight-average molecular weight from 200,000 to 550,000 g/mol, a number-average molecular weight from 18,000 to 48,000 g/mol, a CY-a parameter of less than 0.12, a tan δ at 0.1 sec−1 from 0.5 to 0.9 degrees, a tan δ at 100 sec−1 from 0.5 to 0.75 degrees, and a viscosity at 0.001 sec−1 from 1.3×106 to 1×107 Pa-sec. These ethylene polymers can be produced by peroxide-treating a bimodal molecular weight distribution dual metallocene-catalyzed resin, and can be used to produce blow molded bottles and other blow molded products.
Abstract:
Ethylene-based polymers having a density of 0.952 to 0.965 g/cm3, a high load melt index (HLMI) from 5 to 25 g/10 min, a weight-average molecular weight from 275,000 to 450,000 g/mol, a number-average molecular weight from 15,000 to 40,000 g/mol, a viscosity at HLMI from 1400 to 4000 Pa-sec, and a tangent delta at 0.1 sec−1 from 0.65 to 0.98 degrees. These polymers have the processability of chromium-based resins, but with improved stress crack resistance, and can be used in large-part blow molding applications.