Abstract:
Embodiments of the present disclosure are directed to coated glass articles which reduce glass particle formation caused by glass to glass contact in pharmaceutical glass filling lines.
Abstract:
Disclosed herein are delamination resistant glass pharmaceutical containers which may include a glass body having a Class HGA1 hydrolytic resistance when tested according to the ISO 720:1985 testing standard. The glass body may have an interior surface and an exterior surface. The interior surface of the glass body does not comprise a boron-rich layer when the glass body is in an as-formed condition. A heat-tolerant coating may be bonded to at least a portion of the exterior surface of the glass body. The heat-tolerant coating may have a coefficient of friction of less than about 0.7 and is thermally stable at a temperature of at least 250° C. for 30 minutes.
Abstract:
A pharmaceutical package may include a glass body enclosing an inner volume and having an exterior surface. The glass body may be formed from a borosilicate glass that meets the Type 1 criteria according to USP or an alkali aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to the ISO 720-1985 testing standard. A coupling agent layer having a first thickness less than or equal to 100 nm may be disposed on the exterior surface of the glass body. A polymer layer having a second thickness of less than 50 nm may be positioned over the coupling agent layer. The exterior surface of the glass body with the coupling agent layer and the polymer layer may have a coefficient of friction less than or equal to 0.7.
Abstract:
A method for measuring volatile organic compounds includes loading glass containers into an oven, heating the oven, purging the oven with dry clean air, collecting a volumetric portion of an oven exhaust, trapping volatile organic compounds from the volumetric portion, and measuring the volatile organic compounds trapped in the trap. The one or more glass containers are in-tact while measuring the VOCs of the coated glass container. An apparatus includes an oven having an interior volume that is capable of holding one or more in-tact glass containers, a flow meter fluidly connected to the first trap, and a pump fluidly connected to the flow meter. The first trap collects volatile organic compounds from a volumetric portion of the oven exhaust gas. The pump controls a flow rate of the volumetric portion of the oven exhaust gas across the first trap.
Abstract:
Disclosed herein are delamination resistant glass pharmaceutical containers which may include an aluminosilicate glass having a Class HGA 1 hydrolytic resistance when tested according to ISO 720-1985 testing standard. The glass containers may also have a compressive stress layer with a depth of layer of greater than 25 μm. A surface compressive stress of the glass containers may be greater than or equal to 350 MPa. The delamination resistant glass pharmaceutical containers may be ion exchange strengthened and the ion exchange strengthening may include treating the delamination resistant glass pharmaceutical container in a molten salt bath for a time less than or equal to 5 hours at a temperature less than or equal to 450° C.
Abstract:
In embodiments, a delamination resistant glass pharmaceutical package includes a glass body formed from a Type 1 Class glass composition according to ASTM Standard E438-92, the glass body having a wall portion with an inner surface and an outer surface. The glass body may have at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and Type 1 chemical durability according to USP . An interior region of the glass body may extend from about 10 nm below the inner surface and having a persistent layer homogeneity. The glass body may also have a surface region extending over the inner surface and having a persistent surface homogeneity such that the glass body is resistant to delamination.
Abstract:
Coated pharmaceutical packages are disclosed. In embodiments, a coated pharmaceutical package includes a glass body comprising a first surface. A low-friction coating may be positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. A light transmission through the coated pharmaceutical package may be greater than or equal to about 55% of a light transmission through an uncoated pharmaceutical package for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
Abstract:
A coated glass pharmaceutical package may include a body formed from a Type 1 Class glass according to ASTM Standard E438-92. The body may have an interior surface and an exterior surface. The body may also have at least a class A2 base resistance or better according to ISO 695, at least a type HGB2 hydrolytic resistance or better according to ISO 719 and a Type 1 chemical durability according to USP . A coating having a thickness of ≦100 microns may be positioned on at least a portion of the exterior surface. The portion of the exterior surface with the coating may have a coefficient of friction that is at least 20% less than an uncoated glass pharmaceutical package and the coefficient of friction does not increase by more than 30% after undergoing a depyrogenation.
Abstract:
According to one embodiment, a glass container may include a body formed from a Type I, Class B glass composition according to ASTM Standard E438-92. The body may have an inner surface, an outer surface and a wall thickness extending between the outer surface and the inner surface. The body may also include a compressively stressed layer extending into the wall thickness from at least one of the outer surface and the inner surface. A lubricous coating may be positioned on at least a portion of the outer surface of the body, wherein the outer surface of the body with the lubricous coating has a coefficient of friction less than or equal to 0.7.
Abstract:
Low-friction coatings and glass articles with low-friction coatings are disclosed. According to one embodiment, a coated glass article may include a glass body comprising a first surface and a low-friction coating positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. The coated glass article may be thermally stable at a temperature of at least about 260° C. for 30 minutes. A light transmission through the coated glass article may be greater than or equal to about 55% of a light transmission through an uncoated glass article for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.