摘要:
A method of fabricating strained-silicon transistors includes providing a semiconductor substrate, in which the semiconductor substrate contains a gate structure thereon; performing an etching process to form two recesses corresponding to the gate structure within the semiconductor substrate; performing an oxygen flush on the semiconductor substrate; performing a cleaning process on the semiconductor substrate; and performing a selective epitaxial growth (SEG) to form an epitaxial layer in each recess for forming a source/drain region.
摘要:
A method for forming a metal oxide semiconductor (MOS) transistor is provided. First, a gate structure is formed over a substrate. Then, offset spacers are formed on respective sidewalls of the gate structure. A first ion implantation process is performed to form a lightly doped drain (LDD) in the substrate beside the gate structure. Other spacers are formed on respective sidewalls of the offset spacers. Thereafter, a second ion implantation process is performed to form source/drain region in the substrate beside the spacers. Then, a metal silicide layer is formed on the surface of the source and the drain. An oxide layer is formed on the surface of the metal silicide layer. The spacers are removed and an etching stop layer is formed on the substrate. With the oxide layer over the metal silicide layer, the solvent for removing the spacers is prevented from damaging the metal silicide layer.
摘要:
An etching process compatible with DUV lithography is described. A mask layer is previously formed over a material layer to be etched through a DUV lithography process of 193 nm or 157 nm. Then, plasma etching is performed to pattern the material layer using the mask layer as an etching mask, wherein the etching gas causes a protective layer to form on the surface of the mask layer. The etching gas of the plasma etching includes at least a halogen-containing gas and Xe, wherein the halogen can be F, Cl, Br or a combination thereof.
摘要:
A semiconductor device and a fabricating process for the same are provided. The semiconductor device includes a base layer having a part of a reactive material; and a self-assembled protecting layer of a self-assembled molecule reacting with the reactive material formed over the part.
摘要:
The present disclosure is directed to a process for the fabrication of a semiconductor device. In some embodiments the semiconductor device comprises a patterned surface. The pattern can be formed from a self-assembled monolayer. The disclosed process provides self-assembled monolayers which can be deposited quickly, thereby increasing production throughput and decreasing cost, as well as providing a pattern having substantially uniform shape.
摘要:
An integrated circuit structure includes a semiconductor substrate; a gate stack overlying the semiconductor substrate; a gate spacer on a sidewall of the gate stack; a first contact plug having an inner edge contacting a sidewall of the gate spacer, and a top surface level with a top surface of the gate stack; and a second contact plug over and contacting the first contact plug. The second contact plug has a cross-sectional area smaller than a cross-sectional area of the first contact plug.
摘要:
A method of fabricating a semiconductor device is disclosed. The method includes defining an electrode on a semiconductor substrate; forming a spacer on at least one sidewall of the electrode; performing a process operation on the semiconductor substrate using the spacer as a mask and forming a material layer on the top or the surface of the semiconductor substrate and the electrode; and removing the spacer by steps of performing a wet etching process at a temperature in a range of 100° C. to 150° C. to etch the spacer using an acid solution containing phosphoric acid as an etchant. With respect to another aspect, a method of removing a spacer is also disclosed. The method includes performing a wet etching process at a temperature in a range of 100° C. to 150° C. to etch the spacer using an acid solution containing phosphoric acid as an etchant.