Abstract:
A method of fabricating a semiconductor device is disclosed. The method includes defining an electrode on a semiconductor substrate; forming a spacer on at least one sidewall of the electrode; performing a process operation on the semiconductor substrate using the spacer as a mask and forming a material layer on the top or the surface of the semiconductor substrate and the electrode; and removing the spacer by steps of performing a wet etching process at a temperature in a range of 100° C. to 150° C. to etch the spacer using an acid solution containing phosphoric acid as an etchant. With respect to another aspect, a method of removing a spacer is also disclosed. The method includes performing a wet etching process at a temperature in a range of 100° C. to 150° C. to etch the spacer using an acid solution containing phosphoric acid as an etchant.
Abstract:
A metal-oxide-semiconductor transistor device is disclosed, in which, a silicon nitride spacer has been formed but is removed after an ion implantation process to form a source/drain region and a salicide process to form a metal silicide layer on the surface of the source/drain region and the gate electrode are performed. The metal silicide layer comprises silicon, nickel and at least one metal selected from a group consisting of iridium, iron, cobalt, platinum, palladium, molybdenum, and tantalum; therefore, when the silicon nitride spacer is removed by etching, the metal silicide layer is not damaged.
Abstract:
A method of fabricating a semiconductor device is disclosed. The method includes defining an electrode on a semiconductor substrate; forming a spacer on at least one sidewall of the electrode; performing a process operation on the semiconductor substrate using the spacer as a mask and forming a material layer on the top or the surface of the semiconductor substrate and the electrode; and removing the spacer by steps of performing a wet etching process at a temperature in a range of 100° C. to 150° C. to etch the spacer using an acid solution containing phosphoric acid as an etchant. With respect to another aspect, a method of removing a spacer is also disclosed. The method includes performing a wet etching process at a temperature in a range of 100° C. to 150° C. to etch the spacer using an acid solution containing phosphoric acid as an etchant.
Abstract:
A method of stripping photoresist is provided. First, a first dielectric layer including a plurality of contact structures is provided. Then, a barrier layer is formed over the first dielectric layer. Thereafter, a second dielectric layer is formed over the barrier layer. Next, a patterned photoresist layer is formed over the second dielectric layer. Then, the patterned photoresist layer is used as a mask layer for patterning the second dielectric layer and the barrier layer to expose a portion of the contact structures. Furthermore, the patterned photoresist layer is removed by using an oxygen-free reducing gas. Since the reducing gas does not contain oxygen, the process can prevent oxide from forming on the contact structures, thereby reducing resistance of the contact structures.
Abstract:
A two-step stripping method for removing via photoresist during the fabrication of trench-first partial-via dual damascene features is disclosed. In the first cleaning step, inert gas (He, Ar, N2)/fluorocarbon plasma is used to contact the remaining “Via Photo” for a short time period not exceeding 20 seconds. Thereafter, in the second cleaning step, a reducing plasma is used to completely strip the remaining “Via Photo”, thereby preventing the low-k or ultra low-k carbon-containing dielectric layer from potential carbon depletion.
Abstract translation:公开了在制造沟槽首先部分通孔双镶嵌特征期间通过光致抗蚀剂去除的两步剥离方法。 在第一清洗步骤中,使用惰性气体(He,Ar,N 2 N 2)/氟碳等离子体与剩余的“通孔照片”接触不超过20秒的短时间。 此后,在第二清洗步骤中,使用还原等离子体来完全剥离剩余的“通孔照片”,从而防止低k或超低k含碳介质层潜在的碳消耗。
Abstract:
A method for forming a metal oxide semiconductor (MOS) transistor is provided. First, a gate structure is formed over a substrate. Then, offset spacers are formed on respective sidewalls of the gate structure. A first ion implantation process is performed to form a lightly doped drain (LDD) in the substrate beside the gate structure. Other spacers are formed on respective sidewalls of the offset spacers. Thereafter, a second ion implantation process is performed to form source/drain region in the substrate beside the spacers. Then, a metal silicide layer is formed on the surface of the source and the drain. An oxide layer is formed on the surface of the metal silicide layer. The spacers are removed and an etching stop layer is formed on the substrate. With the oxide layer over the metal silicide layer, the solvent for removing the spacers is prevented from damaging the metal silicide layer.
Abstract:
A method of removing a metal suicide layer on a gate electrode in a semiconductor manufacturing process is disclosed, in which the gate electrode, a metal silicide layer, a spacer, a silicon nitride cap layer, and a dielectric layer have been formed. The method includes performing a chemical mechanical polishing process to polish the dielectric layer using the silicon nitride cap layer as a polishing stop layer to expose the silicon nitride cap layer over the gate electrode; removing the exposed silicon nitride cap layer to expose the metal silicide layer; and performing a first etching process to remove the metal silicide layer on the gate electrode.
Abstract:
A method for forming a metal oxide semiconductor (MOS) transistor is provided. First, a gate structure is formed over a substrate. Then, offset spacers are formed on respective sidewalls of the gate structure. A first ion implantation process is performed to form a lightly doped drain (LDD) in the substrate beside the gate structure. Other spacers are formed on respective sidewalls of the offset spacers. Thereafter, a second ion implantation process is performed to form source/drain region in the substrate beside the spacers. Then, a metal silicide layer is formed on the surface of the source and the drain. An oxide layer is formed on the surface of the metal silicide layer. The spacers are removed and an etching stop layer is formed on the substrate. With the oxide layer over the metal silicide layer, the solvent for removing the spacers is prevented from damaging the metal silicide layer.
Abstract:
The present invention pertains to a via-first dual damascene process. A semiconductor substrate having a conductive structure and a dielectric layer on the semiconductor substrate is provided. The dielectric layer has a via opening exposing the conductive structure. The via opening is filled with a gap-filling polymer to form a gap-filling polymer (GFP) layer on the dielectric layer. The GFP layer is etched back to a predetermined depth such that an exposed surface of the GFP layer is lower than surface of the dielectric layer to form a recess, thereby exposing portions of sidewalls of the via opening. A surface treatment for altering surface property of the sidewalls and the exposed surface of the GFP layer is then carried out, thereby preventing a subsequent deep UV photoresist from interacting with the sidewalls or the exposed surface of the GFP layer either in a chemical or physical way.
Abstract:
A method of cleaning a dual damascene structure includes forming a first conductive layer in a substrate. A dielectric layer is formed over the substrate. A dual damascene opening is formed in the dielectric layer to expose the first conductive layer. A H2O2 based aqueous solution is used to remove polymer residues in the dual damascene opening. A temperature of the H2O2 based aqueous solution is controlled so that the first conductive layer is not corroded. A diluted HF solution or a diluted HF and HCl solution is used to remove the polymer residues. A second conductive layer is formed over the substrate to fill the dual damascene opening. A chemical mechanical polishing process is performed with the dielectric layer serving as a polishing stop to remove the second conductive layer outside the dual damascene opening. A H2O2 based aqueous solution is used to clean the hydrocarbon particulates from the chemical mechanically polishing step. A diluted HF solution or a diluted HF and HCl solution is used to remove the slurry residues, such as silicon oxide of the slurry, from the chemical mechanical polishing step.