摘要:
The present invention relates generally to methods and arrangements for positioning in a wireless communications system, such as LTE. In particular, the present invention relates to improving positioning accuracy. The invention provides methods and arrangements for scheduling positioning subframes, i.e. low interference subframes, for allowing aligning of positioning subframes across a number of cells in order to reduce the interference from data symbols of cells in the neighborhood of a cell serving the UE that is performing positioning measurements. A time instance during which transmission of the positioning subframes is to occur in a wireless communications network is selected. The base stations in the wireless communications network are informed about the selected time instance, whereupon the base stations schedule and transmit the positioning subframes based on the selected time instance, whereby the positioning subframes are aligned throughout the network.
摘要:
The embodiments herein relate to a method in a base station for communicating with a user equipment in the communication network. The base station is configured to communicate with the user equipment according to a selectable of at least two user equipment categories. Based on information about a selected user equipment category, the base station determines a first number of maximum transmission layers supported by the base station. The base station communicates with the user equipment according to up to the determined first number of maximum transmission layers and according to the selected user equipment category.
摘要:
Embodiments herein include a method in a user equipment (UE) for transmitting uplink control information in time slots of a subframe over a radio channel to a radio base station. The uplink control information is comprised in a block of bits.The UE maps the block of bits to a sequence of complex valued modulation symbols. The UE block spreads the sequence across Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing (DFTS-OFDM) symbols. This is performed by applying a spreading sequence to the sequence of complex valued modulation symbols, to achieve a block spread sequence of complex valued modulation symbols. The UE further transforms the block-spread sequence, per DFTS-OFDM symbol. This is performed by applying a matrix that depends on a DFTS-OFDM symbol index and/or slot index to the block-spread sequence. The UE also transmits the block spread sequence, as transformed, over the radio channel to the radio base station.
摘要:
A method of wirelessly transmitting control information includes generating control information comprising a plurality of control bits and encoding the control bits using a block code that outputs an encoded bit sequence comprising encoded bits b(0), b(1), . . . , b(19). The control bits are encoded using the block code by generating a linear combination of a plurality of basis sequences. The method also includes dividing the encoded bits into a first group and a second group. The first group includes the encoded bits {b(0), b(1), b(5), b(6), b(8), b(11), b(12), b(14), b(17), b(19)} and the second group includes the encoded bits {b(2), b(3), b(4), b(7), b(9), b(10), b(13), b(15), b(16), b(18)}. Additionally, the method includes transmitting the first group of encoded bits on a first set of carriers and transmitting the second group of encoded bits on a second set of carriers. The second set of carriers have different frequencies from the first set of carriers.
摘要:
A system and method for determining a Physical Uplink Control Channel (PUCCH) power control parameter h(nCQI,nHARQ) for two Carrier Aggregated (CA) PUCCH formats—PUCCH format 3 and channel selection. The value of h(nCQI,nHARQ) may be based on only a linear function of nHARQ for both of the CA PUCCH formats. Based on the CA PUCCH format configured for the User Equipment (UE), the e-Node B (eNB) may instruct the UE to select or apply a specific linear function of nHARQ as a value for the power control parameter h(nCQI,nHARQ), so as to enable the UE to more accurately establish transmit power of its PUCCH signal. Values for another PUCCH power control parameter—ΔF—PUCCH(F)—are also provided for use with PUCCH format 3. A new offset parameter may be signaled for each PUCCH format that has transmit diversity configured.
摘要:
Methods and arrangements for resource allocation in a telecommunication system in which aggregation of component carriers is applied. The size of the resource allocation field is determined based on the transmission bandwidth of a selection of component carriers. The selection of component carriers comprises the component carrier on which the resource allocation message is monitored and the component carriers which are cross-scheduled from said component carrier. The resource allocation message comprising the resource allocation field with the determined size is transmitted to the user equipment over a particular component carrier of the selection of component carriers. Furthermore, with only one size of the resource allocation field a smaller number of code word sizes needs to be monitored by the UE. This leads to a smaller number of blind decodings performed in the UE. The present invention enables a more tailored approach when determining the size of the resource allocation field to avoid too high overhead but also a too coarse resource allocation.
摘要:
The present invention relates to methods and arrangements for assisting a User Equipment (UE) to determine transmit power to be used on a first uplink component carrier y, wherein the base station is configured to communicate with the UE over a plurality of uplink and downlink component carriers x,y. The UE is aware of path loss parameters associated with a second downlink component carrier x. The method in a base station comprises determining cell specific path loss parameters associated with the component carriers of the base station. The cell specific path loss parameters at least comprises path loss parameters associated with the first uplink component carrier y and a second uplink component carrier x which is paired to the second downlink component carrier x, wherein the second uplink component carrier and second downlink component carrier are within one frequency band. The method comprises the further steps of calculating a pathloss offset, deltaPL(y,x), for the first uplink component carrier y, wherein the pathloss offset deltaPL(y,x) is the pathloss power offset for the first uplink component carrier y with respect to the second uplink component carrier x, and sending the calculated pathloss offset, deltaPL(y,x) to the UE.
摘要:
The embodiments herein relate to a method in a base station for communicating with a user equipment in the communication network. The base station is configured to communicate with the user equipment according to a selectable of at least two user equipment categories. Based on information about a selected user equipment category, the base station determines a first number of maximum transmission layers supported by the base station. The base station communicates with the user equipment according to up to the determined first number of maximum transmission layers and according to the selected user equipment category.
摘要:
Embodiments herein relate to a method in a user equipment for handling control information in a radio communications network. The user equipment is served in a cell controlled by a radio network node and is of a second type of user equipments. The user equipment monitors a search space for control information of a physical data control channel, PDCCH, which search space is associated with the second type of user equipments. The PDCCH comprises at least one control channel element that comprises resource elements at least partly comprised in a second region of resource elements. The resource elements of the second region are only allowed to be scheduled for control information to user equipments of the second type. The at least one CCE is defined in relation to a CCE of a first region of resource elements, which resource elements of the first region are allowed to be scheduled for control information to user equipments of a first type. The user equipment detects control information within the monitored search space, and uses the detected control information for communicating with the radio network node.
摘要:
Methods in a Long Term Evolution (LTE) base station for controlling transmit power of a User Equipment(UE) are provided. The method includes configuring UE individual power weighting factors to be used for weighting available UE transmit power between uplink component carriers and/or between Physical Uplink Control Channel (PUCCH) and Physical Uplink Shared Channel (PUSCH); and signaling the configured UE individual power weighting factors to the UE. Related methods and arrangements are also provided.