Abstract:
Disclosed are cardiac shunts and method of delivery, and in particular, to a shunt to reduce elevated left atrial pressure (LAP). The methods include forming a puncture hole between the left atrium and the coronary sinus, widening the puncture hole, and placing an expandable shunt within the widened puncture hole. A first catheter having a side-extending needle may be used to form a puncture into the left atrium. A second catheter extends along a guidewire and an expandable shunt with distal and proximal flanges is expelled therefrom into the puncture. The shunt defines a blood flow passage therethrough that permits shunting of blood from the left atrium to the coronary sinus when the LAP is elevated. The shunt is desirable formed of a super-elastic material and manipulated with control rods. The shunt defines a tilted flow tube that facilitates collapse into the catheter.
Abstract:
This disclosure pertains generally to prosthetic devices and related methods for helping to seal native heart valves and prevent or reduce regurgitation therethrough, as well as devices and related methods for implanting such prosthetic devices. In some cases, a spacer having a single anchor can be implanted within a native heart valve. In some cases, a spacer having dual anchors can be implanted within a native heart valve. In some cases, devices can be used to extend the effective length of a native heart valve leaflet.
Abstract:
Methods and devices for increasing flow in the left atrial appendage (LAA) include a conduit directing blood flow from a pulmonary artery into the LAA and/or a conduit drawing blood from the LAA by a Bernoulli effect. In one embodiment, a method comprises implanting a conduit in a pulmonary vein, expanding an inlet portion such that the conduit becomes anchored within the vein and directs blood through an outlet portion of the conduit into or toward the left atrial appendage.
Abstract:
A prosthetic heart valve includes a collapsible and expandable frame having a main body, an atrial portion, and at least one ventricular anchor. The atrial portion extends radially outwardly relative to the main body and the ventricular anchor extends from a ventricular end of the main body. The main body and the atrial portion are preferably separate metal components that are coupled together via sutures or a fabric member. The prosthetic heart valve also includes a valve structure that is supported in the main body of the frame. The valve structure has a plurality of leaflets for regulating the flow of blood in one direction.
Abstract:
Disclosed are cardiac shunts and method of delivery, and in particular, to a shunt to reduce elevated left atrial pressure (LAP). The methods include forming a puncture hole between the left atrium and the coronary sinus, widening the puncture hole, and placing an expandable shunt within the widened puncture hole. A first catheter having a side-extending needle may be used to form a puncture into the left atrium. A second catheter extends along a guidewire and an expandable shunt with distal and proximal flanges is expelled therefrom into the puncture. The shunt defines a blood flow passage therethrough that permits shunting of blood from the left atrium to the coronary sinus when the LAP is elevated. The shunt is desirable formed of a super-elastic material and manipulated with control rods. The shunt defines a tilted flow tube that facilitates collapse into the catheter.
Abstract:
Embodiments of an apparatus, and a method for crimping expandable stents or prosthetic valves having a radially expandable and compressible annular body and one or more protruding anchors extending from the body using the apparatus, where the apparatus comprise a housing, a plurality of circumferentially arranged nesting jaws, and an actuator configured to move the jaws radially inwardly to reduce the size of the crimping aperture, thereby radially compressing the annular body of the prosthetic valve or stent. In particular embodiments, a selected set of the jaws, each having a front side and a recessed portion in its front side adjacent to its inner end. The recessed portions of the selected jaws collectively are sized and shaped to receive the one or more anchors of the prosthetic valve when the annular body is positioned within the crimping aperture.
Abstract:
Methods and devices for increasing flow in the left atrial appendage (LAA) include a conduit directing blood flow from a pulmonary artery into the LAA and/or a conduit drawing blood from the LAA by a Bernoulli effect. In one embodiment, a method comprises implanting a conduit in a pulmonary vein, expanding an inlet portion such that the conduit becomes anchored within the vein and directs blood through an outlet portion of the conduit into or toward the left atrial appendage.
Abstract:
This disclosure pertains generally to prosthetic devices and related methods for helping to seal native heart valves and prevent or reduce regurgitation therethrough, as well as devices and related methods for implanting such prosthetic devices. In some cases, a spacer having a single anchor can be implanted within a native heart valve. In some cases, a spacer having dual anchors can be implanted within a native heart valve. In some cases, devices can be used to extend the effective length of a native heart valve leaflet.