Abstract:
Described embodiments include a system and a method. A system includes an energy storage device configured to store and release energy. The system includes a waveform sensor configured to detect a second harmonic or higher frequency component deviation in a waveform of electric power supplied to the system by an electrical power grid. The system includes a bi-directional switched-mode converter coupled between the energy storage device and the electrical power grid. The switched-mode converter is configured to receive and convert electric power from the electrical power grid into energy stored in the energy storage device and to convert energy released from the energy storage device into electric power and discharge the converted electric power into the electrical power grid. The system includes a waveform correction manager configured to control the bi-directional switched-mode converter in a manner implementing a waveform deviation reduction strategy responsive to the detected deviation in the waveform.
Abstract:
According to various embodiments, a mobile device continuously and/or automatically scans a user environment for tags containing non-human-readable data. The mobile device may continuously and/or automatically scan the environment for tags without being specifically directed at a particular tag. The mobile device may be adapted to scan for audio tags, radio frequency tags, and/or image tags. The mobile device may be configured to scan for and identify tags within the user environment that satisfy a user preference. The mobile device may perform an action in response to identifying a tag that satisfies a user preference. The mobile device may be configured to scan for a wide variety of tags, including tags in the form of quick response codes, steganographic content, audio watermarks, audio outside of a human audible range, radio frequency identification tags, long wavelength identification tags, near field communication tags, and/or a Memory Spot device.
Abstract:
A digital memory device includes a moveable element that is configured to move between a first stable position and a second stable position, where the moveable element comprises a first conducting area. The digital memory device further includes a second conducting area on the surface of a substrate. At the first stable position of the moveable element, a first gap exists between the first conducting area and the second conducting area. At the second stable position of the moveable element, a second gap that is smaller than the first gap exists between the first conducting area and the second conducting area. In at least the second stable position, an attractive Casimir force between the moveable element and the substrate holds the moveable element in the stable position.
Abstract:
A service unmanned aerial vehicle (UAV) includes a flight system, a status component, a navigation system, and a recovery component. The flight system is for flying the service UAV. The status component is configured to determine that a first UAV is disabled. The navigation system is configured to fly the service UAV to a landing location of the first UAV in response to the status component determining that the first UAV is disabled. The recovery component is configured to recover one or more of a payload of the first UAV and a portion of the first UAV.
Abstract:
Various methods for sensing and/or heating that utilize nanostructures or carbon structures, such as nanotubes, nanotube meshes, or graphene sheets, are disclosed. In some methods, at least a pair of contacts are electrically coupled with a given nanostructure or carbon structure to sense a change or to pass a current for heating.
Abstract:
Various sensors and arrays of sensors that utilize nanostructures or carbon structures, such as nanotubes, nanotube meshes, or graphene sheets, are disclosed. In some arrangements, at least a pair of contacts are electrically coupled with a given nanostructure or carbon structure to sense a change.
Abstract:
Various heaters and arrays of heaters that utilize nanostructures or carbon structures, such as nanotubes, nanotube meshes, or graphene sheets, are disclosed. In various arrangements, at least a pair of contacts are electrically coupled with a given nanostructure or carbon structure to pass a current for heating.
Abstract:
A motor vehicle system includes a motor vehicle including an aircraft landing portion, and an actively propelled unmanned aircraft configured to be supported on the aircraft landing portion. The vehicle and aircraft are configured such that the vehicle can provide at least one of fuel and electrical energy to the aircraft while the aircraft is supported on the aircraft landing portion.
Abstract:
Described embodiments include a self-propelled vehicle, method, and system. The self-propelled vehicle includes an autonomous driving system configured to dynamically determine maneuvers operating the vehicle along a route in an automated mode without continuous input from a human driver. The vehicle includes an input device configured to receive a real-time request for a specific dynamic maneuver by the vehicle operating along the route from the human driver. The vehicle includes a decision circuit configured to select a real-time dynamic maneuver by arbitrating between (i) the received real-time request for the specific dynamic maneuver from the human driver and (ii) a real-time determination relative to the specific dynamic maneuver received from the autonomous driving system. The vehicle includes an implementation circuit configured to output the selected real-time dynamic maneuver to an operations system of the vehicle.
Abstract:
A motor vehicle system includes a motor vehicle including an aircraft landing portion, and an actively propelled unmanned aircraft configured to be supported on the aircraft landing portion. The vehicle and aircraft are configured such that the vehicle can provide at least one of fuel and electrical energy to the aircraft while the aircraft is supported on the aircraft landing portion.