Abstract:
Provided are an optical system capable of improving the spatial resolution of hyperspectral imaging and an optical alignment method using the same. The optical system includes a digital micromirror device (DMD) having a rectangular shape, a first cylindrical lens curved to focus and form an image on an axis corresponding to a shorter side of the DMD, and a second cylindrical lens curved in the same axial direction as the axis to collimate light reflected from the DMD.
Abstract:
A wireless optical communication apparatus for performing bi-directional optical transmission in a free space includes a first optical system configured to transmit data through a downlink scheme and a second optical system configured to receive the data from the first optical system and transmit a control signal to the first optical system through an uplink scheme, wherein each of the first optical system and the second optical system transmits and receives the data and the control signal through a single port.
Abstract:
A transmitting apparatus includes an optical modulator configured to modulate input light from a light source into a light signal including a carrier signal and a sideband signal based on a radio frequency (RF) signal, having polarization characteristics crossing each other, an optical power splitter configured to split the light signal into a plurality of light signals, a plurality of light phase shifters configured to respectively shift phases of the plurality of light signals, a plurality of polarization controllers configured to perform control so that a carrier signal and a sideband signal included in each of the phase-shifted plurality of light signals have the same polarization characteristic, and a plurality of photodetectors configured to convert the plurality of light signals, having polarization characteristics controlled by the plurality of polarization controllers, into a plurality of electrical signals and to transfer the electrical signals to a plurality of antenna elements.
Abstract:
Disclosed is a variable optical attenuator. The variable optical attenuator includes an electrochromic device having a reflective property or a transflective property, a lens configured to convert input light to focused light or collimated light and input the focused light or the collimated light to the electrochromic device, and an outputter configured to output light reflected from the electrochromic device, in which the electrochromic device is configured to attenuate an intensity of the input light by controlling a reflectivity and a transmissivity of the input light based on an element included in the electrochromic device and a voltage to be applied to the electrochromic device.
Abstract:
Disclosed is a spectroscopic device including a planar lightwave circuit to which light passing through an optical fiber is input, a wavelength divider configured to divide a wavelength of light passing through the planar lightwave circuit, a beam splitter configured to divide a traveling direction of light passing through the wavelength divider into an external sample inlet and an internal sample inlet and adjust power of the divided light, a charge-coupled device (CCD) image sensor configured to covert light transmitted from the internal sample inlet to an electrical signal or convert light reflected by the external sample inlet to an electrical signal, a control and signal processor configured to process the electrical signal to indicate a light intensity based on each wavelength, and an input and output interface configured to perform a spectrum analysis for each wavelength using the processed electrical signal.
Abstract:
A display device includes a display panel, and a depth perception adjusting unit for adjusting a depth perception, based on polarization characteristics of light output from the display panel, wherein the depth perception adjusting unit includes a directional mirror and a reflective polarizer. Thus, the display device is implemented such that the directional mirror transmits or reflects light depending on an advancing direction of the light. Accordingly, any crosstalk phenomenon does not occur, and a depth perception can be adjusted without any loss of brightness efficiency.
Abstract:
Provided herein is an optical module including: an optical receptacle including a first lens and a second lens; a lens module including a lens unit facing the second lens of the optical receptacle; and an optical element configured to receive a beam emitted from the lens module or form a beam to be emitted to the lens module. A horizontal length and a vertical length of a cross-section of the first lens may differ from each other, and a horizontal length and a vertical length of a cross-section of the second lens may differ from each other.
Abstract:
The optical transmitter module may include a thermal-electric cooler comprising at least one metal pattern formed on a side of a cooling plate temperature of which is controlled by thermo-electric cooling elements, a laser diode installed in one of the at least one metal pattern, and a monitor photo diode which is installed in another one of the at least one metal pattern and monitors change of light signals emitted from the laser diode. Therefore, since elements are located on the same side of the cooling plate, the optical transmitter module may have a simple structure and an advantage that light signals emitted from the laser diode can be directly coupled to the optical fiber without optical path conversions. Also, since the laser diode is installed with a small gap from thermal-electric elements, the temperature control characteristics of the thermal-electric cooler can be enhanced.
Abstract:
An apparatus for guiding an endoscope and a method thereof are provided. According to an embodiment of the present invention, there is provided an endoscope guide method including: acquiring tomogram information of tissues based on an optical interference signal according to an optical signal; calculating a distance between an endoscope and the tissues based on the tomogram information; and controlling the location of the endoscope according to the result of comparison between the distance between the endoscope and the tissues and a predetermined reference distance. Accordingly, it is possible to accurately measure the distance between an endoscope and tissues.