Abstract:
A structure and a manufacturing method of an optical transmission module, in which output light of each of a first optical transmission unit and a second optical transmission unit is combined into one and transmitted through an optical fiber. In order to manufacture the optical transmission module, the first optical transmission unit and the second optical transmission unit are separately manufactured using a wafer-level packaging process and then are stacked. As a result, emission of generated heat is divided into a first heat sink installed in the first optical transmission unit and a second heat sink installed in the second optical transmission unit so that better heat dissipation efficiency is achieved than a conventional optical transmission module. In addition, a mounting area may also be reduced to ½ of the conventional module.
Abstract:
Provided is a livestock house management system for managing a rearing environment of livestock. The livestock house management system includes an environment monitoring sensor unit installed in each of divided zones within a livestock house and configured to measure an environment variable indicating a state of a rearing environment of each of the zones, analyze the measured environment variable, and independently generate a command corresponding to an abnormal situation of each of the zones when the abnormal situation of each of the zones is checked, and a livestock house facility control unit installed in each of the zones and configured to receive the command from the environment monitoring sensor unit installed in a corresponding zone according to a wired or wireless communication scheme, and drive a livestock house facility according to the received command to independently control a rearing environment of each of the zones.
Abstract:
Disclosed herein are an astral lamp device having detachable and angle-controllable LED module blocks and a method of setting the same. The astral lamp device having detachable and angle-controllable LED module blocks, includes a plurality of LED module blocks having one end attached to and disposed on a central frame; and an angle control part configured to control an angle of the LED module block attached to the central frame.
Abstract:
Disclosed are a bidirectional optical transceiver module and a method of aligning the same. The bidirectional optical transceiver module includes: a package having on one side a cavity; a platform mounted on the package; a transmitter which generates output light; a holder which includes the horizontal portion having the through-hole and disposed on the package to cover the cavity, and the vertical portion which has the inclined surface on one side and the connection hole connected to the through-hole; a receiver which generates an electric signal that corresponds to input light incident into the cavity; and a WDM filter that delivers the output light and the input light.
Abstract:
Provided is an apparatus that measures a thickness of a coating by selecting a wavelength of a laser based on a color of the coating using a contactless method using a photoacoustic effect and an interferometer, the apparatus including a pulsed laser source to irradiate a pulsed laser beam toward the coating, a continuous wave (CW) laser source to irradiate a CW laser beam toward the coating, a detector to detect an optical interference signal corresponding to the CW laser beam, and a signal processor to process the optical interference signal to calculate a thickness of the coating.
Abstract:
An ultra-small multi-channel optical module according to one embodiment of the present invention includes a base board, a glass substrate, a heat sink, optical elements, parallel light lenses, a first rectangular reflector, a glass cover, a second rectangular reflector, horizontal reflectors, and a light collecting lens.
Abstract:
Provided herein is a multi-channel optical module including a plurality of laser diodes emitting light with different wavelengths, a thermoelectric cooling device including the plurality of laser diodes, a TO-can including the thermoelectric cooling device, and a holder combined with the TO-can and including a plurality of optical lenses focusing the light with different wavelengths and a multiplexer gathering focused light into a single optical fiber, wherein the holder has a shape in which the TO-can is cut along an axis of a path of the light with different wavelengths for active alignment of the plurality of optical lenses.
Abstract:
A transmitting apparatus includes an optical modulator configured to modulate input light from a light source into a light signal including a carrier signal and a sideband signal based on a radio frequency (RF) signal, having polarization characteristics crossing each other, an optical power splitter configured to split the light signal into a plurality of light signals, a plurality of light phase shifters configured to respectively shift phases of the plurality of light signals, a plurality of polarization controllers configured to perform control so that a carrier signal and a sideband signal included in each of the phase-shifted plurality of light signals have the same polarization characteristic, and a plurality of photodetectors configured to convert the plurality of light signals, having polarization characteristics controlled by the plurality of polarization controllers, into a plurality of electrical signals and to transfer the electrical signals to a plurality of antenna elements.
Abstract:
Provided herein is an optical module including: an optical receptacle including a first lens and a second lens; a lens module including a lens unit facing the second lens of the optical receptacle; and an optical element configured to receive a beam emitted from the lens module or form a beam to be emitted to the lens module. A horizontal length and a vertical length of a cross-section of the first lens may differ from each other, and a horizontal length and a vertical length of a cross-section of the second lens may differ from each other.
Abstract:
The optical transmitter module may include a thermal-electric cooler comprising at least one metal pattern formed on a side of a cooling plate temperature of which is controlled by thermo-electric cooling elements, a laser diode installed in one of the at least one metal pattern, and a monitor photo diode which is installed in another one of the at least one metal pattern and monitors change of light signals emitted from the laser diode. Therefore, since elements are located on the same side of the cooling plate, the optical transmitter module may have a simple structure and an advantage that light signals emitted from the laser diode can be directly coupled to the optical fiber without optical path conversions. Also, since the laser diode is installed with a small gap from thermal-electric elements, the temperature control characteristics of the thermal-electric cooler can be enhanced.